
NATHAN YAU

VISUALIZE THIS
The FlowingData Guide to Design, Visualization, and Statistics

Visualize This

Visualize This
The FlowingData Guide to Design,
Visualization, and Statistics

Nathan Yau

Visualize This: The FlowingData Guide to Design, Visualization, and Statistics

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Nathan Yau

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-94488-2
ISBN: 978-1-118-14024-6 (ebk)
ISBN: 978-1-118-14026-0 (ebk)
ISBN: 978-1-118-14025-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis-
sion should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that
is available in standard print versions of this book may appear or be packaged in all book formats. If you have
purchased a version of this book that did not include media that is referenced by or accompanies a standard print
version, you may request this media by visiting http://booksupport.wiley.com. For more information about
Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011928441

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

To my loving wife, Bea

About the Author

Since 2007, Nathan Yau has written and created graphics for FlowingData, a site on
visualization, statistics, and design. Working with groups such as The New York Times,
CNN, Mozilla, and SyFy, Yau believes that data and information graphics, while great for
analysis, are also perfect for telling stories with data.

Yau has a master’s degree in statistics from the University of California, Los Angeles,
and is currently a Ph.D. candidate with a focus on visualization and personal data.

About the Technical Editor

Kim Rees is co-founder of Periscopic, a socially conscious information visualization
firm. A prominent individual in the visualization community, Kim has over seventeen
years of experience in the interactive industry. She has published papers in the Parsons
Journal of Information Mapping and the InfoVIS 2010 Proceedings, and has spoken at the
O’Reilly Strata Conference, WebVisions, AIGA Shift, and Portland Data Visualization. Kim
received her bachelor of arts in Computer Science from New York University. Periscopic
has been recognized in CommArts Insights, Adobe Success Stories, and awarded by the
VAST Challenge, CommArts Web Picks, and the Communication Arts Interactive Annual.
Recently, Periscopic’s body of work was nominated for the Cooper-Hewitt National
Design Awards.

Credits

Executive Editor
Carol Long

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Kim Rees

Senior Production Editor
Debra Banninger

Copy Editor
Apostrophe Editing Services

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Compositor
Maureen Forys,
Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Image
Nathan Yau

Cover Designer
Ryan Sneed

Acknowledgments

This book would not be possible without the work by the data scientists before me who
developed and continue to create useful and open tools for everyone to use. The soft-
ware from these generous developers makes my life much easier, and I am sure they
will keep innovating.

My many thanks to FlowingData readers who helped me reach more people than I ever
imagined. They are one of the main reasons why this book was written.

Thank you to Wiley Publishing, who let me write the book that I wanted to, and to Kim
Rees for helping me produce something worth reading.

Finally, thank you to my wife for supporting me and to my parents who always encour-
aged me to find what makes me happy.

Contents

Introduction . . xv

1	 Telling Stories with Data 1
More Than Numbers 2
What to Look For . 8
Design . 13
Wrapping Up . 20

2	 Handling Data 21
Gather Data . 22
Formatting Data . 38
Wrapping Up . 52

3	 Choosing Tools to Visualize Data 53
Out-of-the-Box Visualization 54
Programming . . 62
Illustration . . 76
Mapping . . 80
Survey Your Options 88
Wrapping Up . 89

4	 Visualizing Patterns over Time 91
What to Look for over Time 92
Discrete Points in Time 93
Continuous Data 118
Wrapping Up . . 132

5	 Visualizing Proportions 135
What to Look for in Proportions 136
Parts of a Whole 136

xiv Cont ents

Proportions over Time 161
Wrapping Up . . 178

6	 Visualizing Relationships 179
What Relationships to Look For 180
Correlation . 180
Distribution . 200
Comparison . 213
Wrapping Up . . 226

7	 Spotting Differences 227
What to Look For 228
Comparing across Multiple Variables 228
Reducing Dimensions 258
Searching for Outliers 265
Wrapping Up . . 269

8	 Visualizing Spatial Relationships 271
What to Look For 272
Specific Locations 272
Regions . . 285
Over Space and Time 302
Wrapping Up . . 325

9	 Designing with a Purpose 327
Prepare Yourself 328
Prepare Your Readers 330
Visual Cues . 334
Good Visualization 340
Wrapping Up . . 341

Index . . 343

Introduction

Data is nothing new. People have been quantifying and tabulating things for centuries.
However, while writing for FlowingData, my website on design, visualization, and sta-
tistics, I’ve seen a huge boom in just these past few years, and it keeps getting better.
Improvements in technology have made it extremely easy to collect and store data,
and the web lets you access it whenever you want. This wealth in data can, in the right
hands, provide a wealth of information to help improve decision making, communicate
ideas more clearly, and provide a more objective window looking in at how you look at
the world and yourself.

A significant shift in release of government data came in mid-2009, with the United
States’ launch of Data.gov. It’s a comprehensive catalog of data provided by federal
agencies and represents transparency and accountability of groups and officials. The
thought here is that you should know how the government spends tax dollars. Whereas
before, the government felt more like a black box. A lot of the data on Data.gov was
already available on agency sites scattered across the web, but now a lot of it is all in
one place and better formatted for analysis and visualization. The United Nations has
something similar with UNdata; the United Kingdom launched Data.gov.uk soon after,
and cities around the world such as New York, San Francisco, and London have also
taken part in big releases of data.

The collective web has also grown to be more open with thousands of Application Pro-
gramming Interfaces (API) to encourage and entice developers to do something with all
the available data. Applications such as Twitter and Flickr provide comprehensive APIs
that enable completely different user interfaces from the actual sites. API-cataloging
site ProgrammableWeb reports more than 2,000 APIs. New applications, such as
Infochimps and Factual, also launched fairly recently and were specifically developed
to provide structured data.

At the individual level, you can update friends on Facebook, share your location on Four-
square, or tweet what you’re doing on Twitter, all with a few clicks on a mouse or taps on
a keyboard. More specialized applications enable you to log what you eat, how much you

weigh, your mood, and plenty of other things. If you want to track some-
thing about yourself, there is probably an application to help you do it.

With all this data sitting around in stores, warehouses, and databases,
the field is ripe for people to make sense of it. The data itself isn’t all
that interesting (to most people). It’s the information that comes out of
the data. People want to know what their data says, and if you can help
them, you’re going to be in high demand. There’s a reason that Hal Var-
ian, Google’s chief economist, says that statistician is the sexy job of the
next 10 years, and it’s not just because statisticians are beautiful people.
(Although we are quite nice to look at in that geek chic sort of way.)

Visualization
One of the best ways to explore and try to understand a large dataset is with
visualization. Place the numbers into a visual space and let your brain or
your readers’ brains find the patterns. We’re good at that. You can often find
stories that you might never have found with just formal statistical methods.

John Tukey, my favorite statistician and the father of exploratory data analy-
sis, was well versed in statistical methods and properties but believed that
graphical techniques also had a place. He was a strong believer in discover-
ing the unexpected through pictures. You can find out a lot about data just by
visualizing it, and a lot of the time this is all you need to make an informed
decision or to tell a story.

For example, in 2009, the United States experienced a significant increase
in its unemployment rate. In 2007, the national average was 4.6 percent.
In 2008, it had risen to 5.8 percent. By September 2009, however, it was
9.8 percent. These national averages tell only part of the story though.
It’s generalizing over an entire country. Were there any regions that had
higher unemployment rates than others? Were there any regions that
seemed to be unaffected?

The maps in Figure I-1 tell a more complete story, and you can answer the
preceding questions after a glance. Darker-colored counties are areas
that had relatively higher unemployment rates, whereas the lighter-
colored counties had relatively lower rates. In 2009, you see a lot of
regions with rates greater than 10 percent in the west and most areas in
the east. Areas in the Midwest were not hit as hard (Figure I-2).

xvi Int r oduc T ion

xviiInt r oduc T ion

Figure I-1 ​ Maps of unemployment in the United States from 2004 to 2009

Figure I-2 ​ Map of unemployment for 2009

xviii Int r oduc T ion

You couldn’t find these geographic and temporal patterns so quickly with
just a spreadsheet, and definitely not with just the national averages. Also,
although the county-level data is more complex, most people can still
interpret the maps. These maps could in turn help policy makers decide
where to allocate relief funds or other types of support.

The great thing about this is that the data used to produce these maps is
all free and publicly available from the Bureau of Labor Statistics. Albeit
the data was not incredibly easy to find from an outdated data browser, but
the numbers are there at your disposal, and there is a lot sitting around
waiting for some visual treatment.

The Statistical Abstract of the United States, for instance, exists as hun-
dreds of tables of data (Figure I-3), but no graphs. That’s an opportunity
to provide a comprehensive picture of a country. Really interesting stuff. I
graphed some of the tables a while back as a proof of concept, as shown in
Figure I-4, and you get marriage and divorce rates, postal rates, electricity
usage, and a few others. The former is hard to read and you don’t get any-
thing out of it other than individual values. In the graphical view, you can
find trends and patterns easily and make comparisons at a glance.

News outlets, such as The New York Times and The Washington Post do a
great job at making data more accessible and visual. They have probably
made the best use of this available data, as related stories have come and
passed. Sometimes data graphics are used to enhance a story with a dif-
ferent point of view, whereas other times the graphics tell the entire story.

Graphics have become even more prevalent with the shift to online media.
There are now departments within news organizations that deal only with
interactives or only graphics or only maps. The New York Times, for exam-
ple, even has a news desk specifically dedicated to what it calls computer-
assisted reporting. These are reporters who focus on telling the news with
numbers. The New York Times graphics desk is also comfortable dealing
with large amounts of data.

Visualization has also found its way into pop culture. Stamen Design, a
visualization firm well known for its online interactives, has provided a
Twitter tracker for the MTV Video Music Awards the past few years. Each
year Stamen designs something different, but at its core, it shows what
people are talking about on Twitter in real-time. When Kanye West had his
little outburst during Taylor Swift’s acceptance speech in 2009, it was obvi-
ous what people thought of him via the tracker.

xixInt r oduc T ion ﻿

Figure I-3 ​ Table from the Statistical Abstract of the United States

xx Int r oduc T ion

Figure I-4 ​ A graphical view of data from the Statistical Abstract of the United States

xxiInt r oduc T ion

At this point, you enter a realm of visualization less analytical and more
about feeling. The definition of visualization starts to get kind of fuzzy. For
a long time, visualization was about quantitative facts. You should recog-
nize patterns with your tools, and they should aid your analysis in some
way. Visualization isn’t just about getting the cold hard facts. Like in the
case of Stamen’s tracker, it’s almost more about the entertainment factor.
It’s a way for viewers to watch the awards show and interact with others
in the process. Jonathan Harris’ work is another great example. Harris
designs his work, such as We Feel Fine and Whale Hunt, around stories
rather than analytical insight, and those stories revolve around human
emotion over the numbers and analytics.

Charts and graphs have also evolved into not just tools but also as vehi-
cles to communicate ideas—and even tell jokes. Sites such as GraphJam
and Indexed use Venn diagrams, pie charts, and the like to represent pop
songs or show that a combination of red, black, and white equals a Com-
munist newspaper or a panda murder. Data Underload, a data comic of
sorts that I post on FlowingData, is my own take on the genre. I take every-
day observations and put it in chart form. The chart in Figure I-5 shows
famous movie quotes listed by the American Film Institute. It’s totally
ridiculous but amusing (to me, at least).

So what is visualization? Well, it depends on who you talk to. Some people
say it’s strictly traditional graphs and charts. Others have a more liberal
view where anything that displays data is visualization, whether it is data
art or a spreadsheet in Microsoft Excel. I tend to sway more toward the
latter, but sometimes find myself in the former group, too. In the end, it
doesn’t actually matter all that much. Just make something that works for
your purpose.

Whatever you decide visualization is, whether you’re making charts for
your presentation, analyzing a large dataset, or reporting the news with
data, you’re ultimately looking for truth. At some point in time, lies and
statistics became almost synonymous, but it’s not that the numbers lie.
It’s the people who use the numbers who lie. Sometimes it’s on purpose
to serve an agenda, but most of the time it’s inadvertent. When you don’t
know how to create a graph properly or communicate with data in an unbi-
ased way, false junk is likely to sprout. However, if you learn proper visu-
alization techniques and how to work with data, you can state your points
confidently and feel good about your findings.

P Find more Data
Underload on
FlowingData at
http://datafl

.ws/underload

xxii Int r oduc T ion

Figure I-5 ​ Movie quotes in graph form

xxiiiInt r oduc T ion

Learning Data
I got my start in statistics during my freshman year in college. It was a
required introductory course toward my unrelated electrical engineer-
ing degree. Unlike some of the horror stories I’ve heard, my professor
was extremely enthusiastic about his teaching and clearly enjoyed the
topic. He quickly walked up and down the stairs of the lecture hall as he
taught. He waved his hands wildly as he spoke and got students involved
as he walked by. To this day, I don’t think I’ve ever had such an excited
teacher or professor, and it’s undoubtedly something that drew me into
the area of data and eventually what led to graduate school in statistics
four years later.

Through all my undergraduate studies, statistics was data analysis, dis-
tributions, and hypothesis testing, and I enjoyed it. It was fun looking at
a dataset and finding trends, patterns, and correlations. When I started
graduate school though, my views changed, and things got even more
interesting.

Statistics wasn’t just about hypothesis testing (which turns out isn’t all
that useful in a lot of cases) and pattern-finding anymore. Well, no, I take
that back. Statistics was still about those things, but there was a different
feel to it. Statistics is about storytelling with data. You get a bunch of data,
which represents the physical world, and then you analyze that data to find
not just correlations, but also what’s going on around you. These stories
can then help you solve real-world problems, such as decreasing crime,
improving healthcare, and moving traffic on the freeway, or it can simply
help you stay more informed.

A lot of people don’t make that connection between data and real life. I
think that’s why so many people tell me they “hated that course in col-
lege” when I tell them I’m in graduate school for statistics. I know you
won’t make that same mistake though, right? I mean, you’re reading this
book after all.

How do you learn the necessary skills to make use of data? You can get
it through courses like I did, but you can also learn on your own through
experience. That’s what you do during a large portion of graduate school
anyway.

xxiv Int r oduc T ion

It’s the same way with visualization and information graphics. You don’t
have to be a graphic designer to make great graphics. You don’t need a
statistics PhD either. You just need to be eager to learn, and like almost
everything in life, you have to practice to get better.

I think the first data graphics I made were in the fourth grade. They were
for my science fair project. My project partner and I pondered (very deeply
I am sure) what surface snails move on the fastest. We put snails on rough
and smooth surfaces and timed them to see how long it took them to go
a specific distance. So the data at hand was the times for different sur-
faces, and I made a bar graph. I can’t remember if I had the insight to sort
from least to greatest, but I do remember struggling with Excel. The next
year though when we studied what cereal red flour beetles preferred, the
graphs were a snap. After you learn the basic functionality and your way
around the software, the rest is quite easy to pick up. If that isn’t a great
example of learning from experience, then I don’t know what is. Oh, and by
the way, the snails moved fastest on glass, and the red flour beetles pre-
ferred Grape Nuts, in case you were wondering.

This is basic stuff we’re talking about here, but it’s essentially the same
process with any software or programming language you learn. If you’ve
never written a line of code, R, many statisticians’ computing environ-
ment of choice, can seem intimidating, but after you work through some
examples, you start to quickly get the hang of things. This book can help
you with that.

I say this because that’s how I learned. I remember when I first got into
more of the design aspects of visualization. It was the summer after my
second year in graduate school, and I had just gotten the great news that
I was going to be a graphics editor intern at The New York Times. Up until
then, graphics had always been a tool for analysis (with the occasional
science fair bar graph) to me, and aesthetics and design didn’t matter so
much, if at all. Data and its role in journalism didn’t occur to me.

xxvIn t r oduc Ti on

So to prepare, I read all the design books I could and went through a guide
on Adobe Illustrator because I knew that’s what The New York Times used.
It wasn’t until I actually started making graphics though when I truly
started learning. When you learn by doing, you’re forced to pick up what is
necessary, and your skills evolve as you deal with more data and design
more graphics.

How to Read This Book
This book is example-driven and written to give you the skills to take a
graphic from start to finish. You can read it cover to cover, or you can pick
your spots if you already have a dataset or visualization in mind. The chap-
ters are organized so that the examples are self-contained. If you’re new
to data, the early chapters should be especially useful to you. They cover
how to approach your data, what you should look for, and the tools avail-
able to you. You can see where to find data and how to format and prepare
it for visualization. After that, the visualization techniques are split by data
type and what type of story you’re looking for. Remember, always let the
data do the talking.

Whatever way you decide to read this book, I highly recommend read-
ing the book with a computer in front of you, so that you can work
through examples step-by-step and check out sources referred to in
notes and references. You can also download code and data files and
interact with working demos at www.wiley.com/go/visualizethis and
http://book.flowingdata.com.

Just to make things completely clear, here’s a flowchart in Figure I-6 to
help you figure what spots to pick. Have fun!

xxvi Int r oduc T ion

Figure I-6 ​ Where to start reading this book

Telling Stories
with Data

Think of all the popular data visualization works out there—the ones
that you always hear in lectures or read about in blogs, and the ones
that popped into your head as you were reading this sentence. What do
they all have in common? They all tell an interesting story. Maybe the
story was to convince you of something. Maybe it was to compel you
to action, enlighten you with new information, or force you to question
your own preconceived notions of reality. Whatever it is, the best data
visualization, big or small, for art or a slide presentation, helps you
see what the data have to say.

1

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata2

More Than Numbers
Face it. Data can be boring if you don’t know what you’re looking for or don’t
know that there’s something to look for in the first place. It’s just a mix of
numbers and words that mean nothing other than their raw values. The great
thing about statistics and visualization is that they help you look beyond that.
Remember, data is a representation of real life. It’s not just a bucket of num-
bers. There are stories in that bucket. There’s meaning, truth, and beauty.
And just like real life, sometimes the stories are simple and straightforward;
and other times they’re complex and roundabout. Some stories belong in a
textbook. Others come in novel form. It’s up to you, the statistician, program-
mer, designer, or data scientist to decide how to tell the story.

This was one of the first things I learned as a statistics graduate student.
I have to admit that before entering the program, I thought of statistics as
pure analysis, and I thought of data as the output of a mechanical process.
This is actually the case a lot of the time. I mean, I did major in electrical
engineering, so it’s not all that surprising I saw data in that light.

Don’t get me wrong. That’s not necessarily a bad thing, but what I’ve
learned over the years is that data, while objective, often has a human
dimension to it.

For example, look at unemployment again. It’s easy to spout state averages,
but as you’ve seen, it can vary a lot within the state. It can vary a lot by neigh-
borhood. Probably someone you know lost a job over the past few years, and
as the saying goes, they’re not just another statistic, right? The numbers
represent individuals, so you should approach the data in that way. You don’t
have to tell every individual’s story. However, there’s a subtle yet important
difference between the unemployment rate increasing by 5 percentage
points and several hundred thousand people left jobless. The former reads
as a number without much context, whereas the latter is more relatable.

Journalism
A graphics internship at The New York Times drove the point home for me.
It was only for 3 months during the summer after my second year of grad-
uate school, but it’s had a lasting impact on how I approach data. I didn’t
just learn how to create graphics for the news. I learned how to report

Mor e T ha n Numbers 3

data as the news, and with that came a lot of design, organization, fact
checking, sleuthing, and research.

There was one day when my only goal was to verify three numbers in
a dataset, because when The New York Times graphics desk creates a
graphic, it makes sure what it reports is accurate. Only after we knew the
data was reliable did we move on to the presentation. It’s this attention to
detail that makes its graphics so good.

Take a look at any New York Times graphic. It presents the data clearly,
concisely, and ever so nicely. What does that mean though? When you look
at a graphic, you get the chance to understand the data. Important points
or areas are annotated; symbols and colors are carefully explained in a
legend or with points; and the Times makes it easy for readers to see the
story in the data. It’s not just a graph. It’s a graphic.

The graphic in Figure 1-1 is similar to what you will find in The New York
Times. It shows the increasing probability that you will die within one year
given your age.

Figure 1-1  Probability of death given your age

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata4

The base of the graphic is simply a line chart. However, design elements
help tell the story better. Labeling and pointers provide context and help
you see why the data is interesting; and line width and color direct your
eyes to what’s important.

Chart and graph design isn’t just about making statistical visualization but
also explaining what the visualization shows.

Art
The New York Times is objective. It presents the data and gives you the
facts. It does a great job at that. On the opposite side of the spectrum,
visualization is less about analytics and more about tapping into your emo-
tions. Jonathan Harris and Sep Kamvar did this quite literally in We Feel
Fine (Figure 1-2).

Figure 1-2  We Feel Fine by Jonathan Harris and Sep Kamvar

 Check out some
of the best New
York Times graphics
at http://datafl
.ws/nytimes.

�
See Geoff
McGhee’s video
documentary
“Journalism in the
Age of Data” for
more on how
journalists use
data to report
current events.
This includes great
interviews with
some of the best
in the business.

note

Mor e T ha n Numbers 5

The interactive piece scrapes sentences and phrases from personal
public blogs and then visualizes them as a box of floating bubbles. Each
bubble represents an emotion and is color-coded accordingly. As a whole,
it is like individuals floating through space, but watch a little longer and
you see bubbles start to cluster. Apply sorts and categorization through
the interface to see how these seemingly random vignettes connect. Click
an individual bubble to see a single story. It’s poetic and revealing at the
same time.

There are lots of other examples such as Golan Levin’s The Dumpster,
which explores blog entries that mention breaking up with a significant
other; Kim Asendorf’s Sumedicina, which tells a fictional story of a man
running from a corrupt organization, with not words, but graphs and
charts; or Andreas Nicolas Fischer’s physical sculptures that show eco-
nomic downturn in the United States.

The main point is that data and visualization don’t always have to be just
about the cold, hard facts. Sometimes you’re not looking for analytical
insight. Rather, sometimes you can tell the story from an emotional point
of view that encourages viewers to reflect on the data. Think of it like this.
Not all movies have to be documentaries, and not all visualization has to
be traditional charts and graphs.

Entertainment
Somewhere in between journalism and art, visualization has also found
its way into entertainment. If you think of data in the more abstract sense,
outside of spreadsheets and comma-delimited text files, where photos
and status updates also qualify, this is easy to see.

Facebook used status updates to gauge the happiest day of the year, and
online dating site OkCupid used online information to estimate the lies
people tell to make their digital selves look better, as shown in Figure 1-3.
These analyses had little to do with improving a business, increasing rev-
enues, or finding glitches in a system. They circulated the web like wildfire
because of their entertainment value. The data revealed a little bit about
ourselves and society.

Facebook found the happiest day to be Thanksgiving, and OkCupid found
that people tend to exaggerate their height by about 2 inches.

 Interact and
explore people’s
emotions in
Jonathan Harris
and Sep Kamvar’s
live and online
piece at http://
wefeelfine.org.

 See Flowing-
Data for many
more examples
of art and data at
http://datafl.ws/

art.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata6

Figure 1-3  Male Height Distribution on OkCupid

Compelling
Of course, stories aren’t always to keep people informed or entertained.
Sometimes they’re meant to provide urgency or compel people to action.
Who can forget that point in An Inconvenient Truth when Al Gore stands on
that scissor lift to show rising levels of carbon dioxide?

For my money though, no one has done this better than Hans Rosling, pro-
fessor of International Health and director of the Gapminder Foundation.
Using a tool called Trendalyzer, as shown in Figure 1-4, Rosling runs an
animation that shows changes in poverty by country. He does this during
a talk that first draws you in deep to the data and by the end, everyone is
on their feet applauding. It’s an amazing talk, so if you haven’t seen it yet, I
highly recommend it.

The visualization itself is fairly basic. It’s a motion chart. Bubbles repre-
sent countries and move based on the corresponding country’s poverty
during a given year. Why is the talk so popular then? Because Rosling
speaks with conviction and excitement. He tells a story. How often have
you seen a presentation with charts and graphs that put everyone to
sleep? Instead Rosling gets the meaning of the data and uses that to his
advantage. Plus, the sword-swallowing at the end of his talk drives the
point home. After I saw Rosling’s talk, I wanted to get my hands on that
data and take a look myself. It was a story I wanted to explore, too.

 Check out the
OkTrends blog
for more revela-
tions from online
dating such as
what white people
really like and how
not to be ugly by
accident: http://
blog.okcupid.com.

Mor e T ha n Numbers 7

Figure 1-4  Trendalyzer by the Gapminder Foundation

I later saw a Gapminder talk on the same topic with the same visualiza-
tions but with a different speaker. It wasn’t nearly as exciting. To be hon-
est, it was kind of a snoozer. There wasn’t any emotion. I didn’t feel any
conviction or excitement about the data. So it’s not just about the data that
makes for interesting chatter. It’s how you present it and design it that can
help people remember.

When it’s all said and done, here’s what you need to know. Approach visu-
alization as if you were telling a story. What kind of story are you trying
to tell? Is it a report, or is it a novel? Do you want to convince people that
action is necessary?

Think character development. Every data point has a story behind it in the
same way that every character in a book has a past, present, and future.
There are interactions and relationships between those data points. It’s up

 Watch Hans
Rosling wow the
audience with
data and an amaz-
ing demonstration
at http://datafl
.ws/hans.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata8

to you to find them. Of course, before expert storytellers write novels, they
must first learn to construct sentences.

What to Look For
Okay, stories. Check. Now what kind of stories do you tell with data? Well,
the specifics vary by dataset, but generally speaking, you should always be
on the lookout for these two things whatever your graphic is for: patterns
and relationships.

Patterns
Stuff changes as time goes by. You get older, your hair grays, and your
sight starts to get kind of fuzzy (Figure 1-5). Prices change. Logos change.
Businesses are born. Businesses die. Sometimes these changes are sud-
den and without warning. Other times the change happens so slowly you
don’t even notice.

Figure 1-5  A comic look at aging

Whatever it is you’re looking at, the change itself can be interesting as can
the changing process. It is here you can explore patterns over time. For
example, say you looked at stock prices over time. They of course increase

W hat to Look For 9

and decrease, but by how much do they change per day? Per week? Per
month? Are there periods when the stock went up more than usual? If so,
why did it go up? Were there any specific events that triggered the change?

As you can see, when you start with a single question as a starting point,
it can lead you to additional questions. This isn’t just for time series data,
but with all types of data. Try to approach your data in a more exploratory
fashion, and you’ll most likely end up with more interesting answers.

You can split your time series data in different ways. In some cases it
makes sense to show hourly or daily values. Other times, it could be bet-
ter to see that data on a monthly or annual basis. When you go with the
former, your time series plot could show more noise, whereas the latter is
more of an aggregate view.

Those with websites and some analytics software in place can identify with
this quickly. When you look at traffic to your site on a daily basis, as shown
in Figure 1-6, the graph is bumpier. There are a lot more fluctuations.

Figure 1-6  Daily unique visitors to FlowingData

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata10

When you look at it on a monthly basis, as shown in Figure 1-7, fewer data
points are on the same graph, covering the same time span, so it looks
much smoother.

I’m not saying one graph is better than the other. In fact, they can comple-
ment each other. How you split your data depends on how much detail you
need (or don’t need).

Of course, patterns over time are not the only ones to look for. You can also
find patterns in aggregates that can help you compare groups, people, and
things. What do you tend to eat or drink each week? What does the Presi-
dent usually talk about during the State of the Union address? What states
usually vote Republican? Looking at patterns over geographic regions would
be useful in this case. While the questions and data types are different, your
approach is similar, as you’ll see in the following chapters.

Figure 1-7  Monthly unique visitors to FlowingData

W hat to Look For 11

Relationships
Have you ever seen a graphic with a whole bunch of charts on it that
seemed like they’ve been randomly placed? I’m talking about the graph-
ics that seem to be missing that special something, as if the designer gave
only a little bit of thought to the data itself and then belted out a graphic to
meet a deadline. Often, that special something is relationships.

In statistics, this usually means correlation and causation. Multiple vari-
ables might be related in some way. Chapter 6, “Visualizing Relation-
ships,” covers these concepts and how to visualize them.

At a more abstract level though, where you’re not thinking about equations
and hypothesis tests, you can design your graphics to compare and con-
trast values and distributions visually. For a simple example, look at this
excerpt on technology from the World Progress Report in Figure 1-8.

These are histograms that show the number of users of the Internet,
Internet subscriptions, and broadband per 100 inhabitants. Notice that the
range for Internet users (0 to 95 per 100 inhabitants) is much wider than
that of the other two datasets.

Figure 1-8  Technology adoption worldwide

 The World
Progress Report
was a graphi-
cal report that
compared prog-
ress around the
world using data
from UNdata. See
the full version at
http://datafl

.ws/12i.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata12

The quick-and-easy thing to do would have been to let your software
decide what range to use for each histogram. However, each histogram
was made on the same range even though there were no countries who
had 95 Internet subscribers or broadband users per 100 inhabitants. This
enables you to easily compare the distributions between the groups.

So when you end up with a lot of different datasets, try to think of them as
several groups instead of separate compartments that do not interact with
each other. It can make for more interesting results.

Questionable Data
While you’re looking for the stories in your data, you should always ques-
tion what you see. Remember, just because it’s numbers doesn’t mean
it’s true.

I have to admit. Data checking is definitely my least favorite part of graph-
making. I mean, when someone, a group, or a service provides you with a
bunch of data, it should be up to them to make sure all their data is legit.
But this is what good graph designers do. After all, reliable builders don’t
use shoddy cement for a house’s foundation, so don’t use shoddy data to
build your data graphic.

Data-checking and verification is one of the most important—if not the
most important—part of graph design.

Basically, what you’re looking for is stuff that makes no sense. Maybe
there was an error at data entry and someone added an extra zero or
missed one. Maybe there were connectivity issues during a data scrape,
and some bits got mucked up in random spots. Whatever it is, you need to
verify with the source if anything looks funky.

The person who supplied the data usually has a sense of what to expect.
If you were the one who collected the data, just ask yourself if it makes
sense: That state is 90 percent of whatever and all other states are only in
the 10 to 20 percent range. What’s going on there?

Often, an anomaly is simply a typo, and other times it’s actually an inter-
esting point in your dataset that could form the whole drive for your story.
Just make sure you know which one it is.

De sign 13

Design
When you have all your data in order, you’re ready to visualize. Whatever
you’re making, whether it is for a report, an infographic online, or a piece
of data art, you should follow a few basic rules. There’s wiggle room with
all of them, and you should think of what follows as more of a framework
than a hard set of rules, but this is a good place to start if you are just get-
ting into data graphics.

Explain Encodings
The design of every graph follows a familiar flow. You get the data; you
encode the data with circles, bars, and colors; and then you let others read
it. The readers have to decode your encodings at this point. What do these
circles, bars, and colors represent?

William Cleveland and Robert McGill have written about encodings in
detail. Some encodings work better than others. But it won’t matter what
you choose if readers don’t know what the encodings represent in the first
place. If they can’t decode, the time you spend designing your graphic is a
waste.

You sometimes see this lack of context with graphics that are somewhere
in between data art and infographic. You definitely see it a lot with data art.
A label or legend can completely mess up the vibe of a piece of work, but
at the least, you can include some information in a short description para-
graph. It helps others appreciate your efforts.

Other times you see this in actual data graphics, which can be frustrating
for readers, which is the last thing you want. Sometimes you might forget
because you’re actually working with the data, so you know what every-
thing means. Readers come to a graphic blind though without the context
that you gain from analyses.

So how can you make sure readers can decode your encodings? Explain
what they mean with labels, legends, and keys. Which one you choose can
vary depending on the situation. For example, take a look at the world map
in Figure 1-9 that shows usage of Firefox by country.

�

note

See Cleveland
and McGill’s
paper on Graphi-
cal Perception and
Graphical Methods
for Analyzing Data
for more on how
people encode
shapes and colors.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata14

Figure 1-9  Firefox usage worldwide by country

You can see different shades of blue for different countries, but what do
they mean? Does dark blue mean more or less usage? If dark blue means
high usage, what qualifies as high usage? As-is, this map is pretty useless
to us. But if you provide the legend in Figure 1-10, it clears things up. The
color legend also serves double time as a histogram showing the distribu-
tion of usage by number of users.

You can also directly label shapes and
objects in your graphic if you have enough
space and not too many categories, as shown
in Figure 1-11. This is a graph that shows the
number of nominations an actor had before
winning an Oscar for best actor.

Figure 1-10  Legend for
Firefox usage map

De sign 15

Figure 1-11  Directly labeled objects

A theory floated around the web that actors who had the most nominations
among their cohorts in a given year generally won the statue. As labeled,
dark orange shows actors who did have the most nominations, whereas
light orange shows actors who did not.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata16

As you can see, plenty of options are available to you. They’re easy to use,
but these small details can make a huge difference on how your graphic
reads.

Label Axes
Along the same lines as explaining your encodings, you should always
label your axes. Without labels or an explanation, your axes are just there
for decoration. Label your axes so that readers know what scale points are
plotted on. Is it logarithmic, incremental, exponential, or per 100 flush-
ing toilets? Personally, I always assume it’s that last one when I don’t see
labels.

To demonstrate my point, rewind to a contest I held on FlowingData a
couple of years ago. I posted the image in Figure 1-12 and asked readers to
label the axes for maximum amusement.

Figure 1-12  Add your caption here.

There were about 60 different captions for the same graph; Figure 1-13
shows a few.

As you can see, even though everyone looked at the same graph, a simple
change in axis labels told a completely different story. Of course, this was
just for play. Now just imagine if your graph were meant to be taken seri-
ously. Without labels, your graph is meaningless.

De sign 17

Figure 1-13  Some of the results from a caption contest on FlowingData

Keep Your Geometry in Check
When you design a graph, you use geometric shapes. A bar graph uses
rectangles, and you use the length of the rectangles to represent values.
In a dot plot, the position indicates value—same thing with a standard time
series chart. Pie charts use angles to indicate value, and the sum of the
values always equal 100 percent (see Figure 1-14). This is easy stuff, so be
careful because it’s also easy to mess up. You’re going to make a mistake

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata18

if you don’t pay attention, and when you do mess up, people, especially on
the web, won’t be afraid to call you out on it.

Figure 1-14  The right and wrong way to make a pie chart

Another common mistake is when designers start to use two-dimensional
shapes to represent values, but size them as if they were using only a sin-
gle dimension. The rectangles in a bar chart are two-dimensional, but you
only use one length as an indicator. The width doesn’t mean anything. How-
ever, when you create a bubble chart, you use an area to represent values.
Beginners often use radius or diameter instead, and the scale is totally off.

Figure 1-15 shows a pair of circles that have been sized by area. This is the
right way to do it.

Figure 1-15  The right way to size bubbles

De sign 19

Figure 1-16 shows a pair of circles sized by diameter. The first circle has
twice the diameter as that of the second but is four times the area.

It’s the same deal with rectangles, like in a treemap. You use the area of
the rectangles to indicate values instead of the length or width.

Figure 1-16  The wrong way to size bubbles

Include Your Sources
This should go without saying, but so many people miss this one. Where
did the data come from? If you look at the graphics printed in the newspa-
per, you always see the source somewhere, usually in small print along
the bottom. You should do the same. Otherwise readers have no idea how
accurate your graphic is.

There’s no way for them to know that the data wasn’t just made up. Of
course, you would never do that, but not everyone will know that. Other
than making your graphics more reputable, including your source also lets
others fact check or analyze the data.

Inclusion of your data source also provides more context to the numbers.
Obviously a poll taken at a state fair is going to have a different interpreta-
tion than one conducted door-to-door by the U.S. Census.

c h a P t e r 1: T e l l i n g S t o r i e s w i t h D ata20

Consider Your Audience
Finally, always consider your audience and the purpose of your graphics.
For example, a chart designed for a slide presentation should be simple.
You can include a bunch of details, but only the people sitting up front will
see them. On the other hand, if you design a poster that’s meant to be stud-
ied and examined, you can include a lot more details.

Are you working on a business report? Then don’t try to create the most
beautiful piece of data art the world has ever seen. Instead, create a clear
and straight-to-the-point graphic. Are you using graphics in analyses?
Then the graphic is just for you, and you probably don’t need to spend a lot
of time on aesthetics and annotation. Is your graphic meant for publication
to a mass audience? Don’t get too complicated, and explain any challeng-
ing concepts.

Wrapping Up
In short, start with a question, investigate your data with a critical eye, and
figure out the purpose of your graphics and who they’re for. This will help
you design a clear graphic that’s worth people’s time—no matter what
kind of graphic it is.

You learn how to do this in the following chapters. You learn how to handle
and visualize data. You learn how to design graphics from start to finish.
You then apply what you learn to your own data. Figure out what story you
want to tell and design accordingly.

Handling Data

Before you start working on the visual part of any visualization, you
actually need data. The data is what makes a visualization interesting.
If you don’t have interesting data, you just end up with a forgettable
graph or a pretty but useless picture. Where can you find good data?
How can you access it?

When you have your data, it needs to be formatted so that you can load
it into your software. Maybe you got the data as a comma-delimited
text file or an Excel spreadsheet, and you need to convert it to some-
thing such as XML, or vice versa. Maybe the data you want is acces-
sible point-by-point from a web application, but you want an entire
spreadsheet.

Learn to access and process data, and your visualization skills will
follow.

2

c h a P t e r 2: H a n d l i n g D ata22

Gather Data
Data is the core of any visualization. Fortunately, there are a lot of places
to find it. You can get it from experts in the area you’re interested in, a
variety of online applications, or you can gather it yourself.

Provided by Others
This route is common, especially if you’re a freelance designer or work in
a graphics department of a larger organization. This is a good thing a lot
of the time because someone else did all the data gathering work for you,
but you still need to be careful. A lot of mistakes can happen along the way
before that nicely formatted spreadsheet gets into your hands.

When you share data with spreadsheets, the most common mistake to look
for is typos. Are there any missing zeros? Did your client or data supplier
mean six instead of five? At some point, data was read from one source and
then input into Excel or a different spreadsheet program (unless a delim-
ited text file was imported), so it’s easy for an innocent typo to make its way
through the vetting stage and into your hands.

You also need to check for context. You don’t need to become an expert
in the data’s subject matter, but you should know where the original data
came from, how it was collected, and what it’s about. This can help you
build a better graphic and tell a more complete story when you design
your graphic. For example, say you’re looking at poll results. When did
the poll take place? Who conducted the poll? Who answered? Obviously,
poll results from 1970 are going to take on a different meaning from poll
results from the present day.

Finding Sources
If the data isn’t directly sent to you, it’s your job to go out and find it. The
bad news is that, well, that’s more work on your shoulders, but the good
news is that’s it’s getting easier and easier to find data that’s relevant
and machine-readable (as in, you can easily load it into software). Here’s
where you can start your search.

G athe r D ata 23

Search Engines

How do you find anything online nowadays? You Google it. This is a no-
brainer, but you’d be surprised how many times people email me asking
if I know where to find a particular dataset and a quick search provided
relevant results. Personally, I turn to Google and occasionally look to
Wolfram|Alpha, the computational search engine.

Direct from the Source

If a direct query for “data” doesn’t provide anything of use, try searching
for academics who specialize in the area you’re interested in finding data
for. Sometimes they post data on their personal sites. If not, scan their
papers and studies for possible leads. You can also try emailing them, but
make sure they’ve actually done related studies. Otherwise, you’ll just be
wasting everyone’s time.

You can also spot sources in graphics published by news outlets such
as The New York Times. Usually data sources are included in small print
somewhere on the graphic. If it’s not in the graphic, it should be mentioned
in the related article. This is particularly useful when you see a graphic in
the paper or online that uses data you’re interested in exploring. Search
for a site for the source, and the data might be available.

This won’t always work because finding contacts seems to be a little eas-
ier when you email saying that you’re a reporter for the so-and-so paper,
but it’s worth a shot.

Universities

As a graduate student, I frequently make use of the academic resources
available to me, namely the library. Many libraries have amped up their
technology resources and actually have some expansive data archives.
A number of statistics departments also keep a list of data files, many of
which are publicly accessible. Albeit, many of the datasets made available
by these departments are intended for use with course labs and home-
work. I suggest visiting the following resources:

Data and Story Library (DASL) (aa http://lib.stat.cmu.edu/DASL/)—An
online library of data files and stories that illustrate the use of basic
statistics methods, from Carnegie Mellon

 See Wolfram|
Alpha at http://
wolframalpha.com.
The search engine
can be especially
useful if you’re
looking for some
basic statistics on
a topic.

c h a P t e r 2: H a n d l i n g D ata24

Berkeley Data Lab (aa http://sunsite3.berkeley.edu/wikis/datalab/)—
Part of the University of California, Berkeley library system

UCLA Statistics Data Sets (aa www.stat.ucla.edu/data/)—Some of the
data that the UCLA Department of Statistics uses in their labs and
assignments

General Data Applications

A growing number of general data-supplying applications are available.
Some applications provide large data files that you can download for free
or for a fee. Others are built with developers in mind with data accessible
via Application Programming Interface (API). This lets you use data from a
service, such as Twitter, and integrate the data with your own application.
Following are a few suggested resources:

Freebase (aa www.freebase.com)—A community effort that mostly pro-
vides data on people, places, and things. It’s like Wikipedia for data
but more structured. Download data dumps or use it as a backend
for your application.

Infochimps (aa http://infochimps.org)—A data marketplace with free
and for-sale datasets. You can also access some datasets via
their API.

Numbrary (aa http://numbrary.com)—Serves as a catalog for (mostly
government) data on the web.

AggData (aa http://aggdata.com)—Another repository of for-sale data-
sets, mostly focused on comprehensive lists of retail locations.

Amazon Public Data Sets (aa http://aws.amazon.com/publicdatasets)—
There’s not a lot of growth here, but it does host some large scien-
tific datasets.

Wikipedia (aa http://wikipedia.org)—A lot of smaller datasets in the
form of HTML tables on this community-run encyclopedia.

Topical Data

Outside more general data suppliers, there’s no shortage of subject-
specific sites offering loads of free data.

G athe r D ata 25

Following is a small taste of what’s available for the topic of your choice.

Geography

Do you have mapping software, but no geographic data? You’re in luck.
Plenty of shapefiles and other geographic file types are at your disposal.

TIGER (aa www.census.gov/geo/www/tiger/)—From the Census Bureau,
probably the most extensive detailed data about roads, railroads,
rivers, and ZIP codes you can find

OpenStreetMap (aa www.openstreetmap.org/)—One of the best examples
of data and community effort

Geocommons (aa www.geocommons.com/)—Both data and a mapmaker

Flickr Shapefiles (aa www.flickr.com/services/api/)—Geographic
boundaries as defined by Flickr users

Sports

People love sports statistics, and you can find decades’ worth of sports
data. You can find it on Sports Illustrated or team organizations’ sites, but
you can also find more on sites dedicated to the data specifically.

Basketball Reference (aa www.basketball-reference.com/)—Provides
data as specific as play-by-play for NBA games.

Baseball DataBank (aa http://baseball-databank.org/)—Super basic
site where you can download full datasets.

databaseFootball (aa www.databasefootball.com/)—Browse data for NFL
games by team, player, and season.

World

Several noteworthy international organizations keep data about the world,
mainly health and development indicators. It does take some sifting
though, because a lot of the datasets are quite sparse. It’s not easy to get
standardized data across countries with varied methods.

Global Health Facts (aa www.globalhealthfacts.org/)—Health-related
data about countries in the world.

c h a P t e r 2: H a n d l i n g D ata26

UNdata (aa http://data.un.org/)—Aggregator of world data from a vari-
ety of sources

World Health Organization (aa www.who.int/research/en/)—Again,
a variety of health-related datasets such as mortality and life
expectancy

OECD Statistics (aa http://stats.oecd.org/)—Major source for eco-
nomic indicators

World Bank (aa http://data.worldbank.org/)—Data for hundreds of indi-
cators and developer-friendly

Government and Politics

There has been a fresh emphasis on data and transparency in recent
years, so many government organizations supply data, and groups such
as the Sunlight Foundation encourage developers and designers to make
use of it. Government organizations have been doing this for awhile, but
with the launch of data.gov, much of the data is available in one place. You
can also find plenty of nongovernmental sites that aim to make politicians
more accountable.

Census Bureau (aa www.census.gov/)—Find extensive demographics
here.

Data.gov (aa http://data.gov/)—Catalog for data supplied by govern-
ment organizations. Still relatively new, but has a lot of sources.

Data.gov.uk (aa http://data.gov.uk/)—The Data.gov equivalent for the
United Kingdom.

DataSF (aa http://datasf.org/)—Data specific to San Francisco.

NYC DataMine (aa http://nyc.gov/data/)—Just like the above, but for
New York.

Follow the Money (aa www.followthemoney.org/)—Big set of tools and
datasets to investigate money in state politics.

OpenSecrets (aa www.opensecrets.org/)—Also provides details on gov-
ernment spending and lobbying.

G athe r D ata 27

Data Scraping
Often you can find the exact data that you need, except there’s one prob-
lem. It’s not all in one place or in one file. Instead it’s in a bunch of HTML
pages or on multiple websites. What should you do?

The straightforward, but most time-consuming method would be to visit
every page and manually enter your data point of interest in a spreadsheet.
If you have only a few pages, sure, no problem.

What if you have a thousand pages? That would take too long—even a hun-
dred pages would be tedious. It would be much easier if you could auto-
mate the process, which is what data scraping is for. You write some code
to visit a bunch of pages automatically, grab some content from that page,
and store it in a database or a text file.

Example: Scrape a Website

The best way to learn how to scrape data is to jump right into an example.
Say you wanted to download temperature data for the past year, but you
can’t find a source that provides all the numbers for the right time frame
or the correct city. Go to almost any weather website, and at the most,
you’ll usually see only temperatures for an extended 10-day forecast.
That’s not even close to what you want. You want actual temperatures
from the past, not predictions about future weather.

Fortunately, the Weather Underground site does provide historic tempera-
tures; however, you can see only one day at a time.

To make things more concrete, look up temperature in Buffalo. Go to the
Weather Underground site and search for BUF in the search box. This
should take you to the weather page for Buffalo Niagara International,
which is the airport in Buffalo (see Figure 2-1).

�
Although coding
is the most flexible
way to scrape the
data you need,
you can also try
tools such as
Needlebase and
Able2Extract PDF
converter. Use is
straightforward,
and they can save
you time.

note

 Visit Weather
Underground
at http://­
wunderground.com.

c h a P t e r 2: H a n d l i n g D ata28

Figure 2-1 ​ Temperature in Buffalo, New York, according to Weather Underground

The top of the page provides the cur-
rent temperature, a 5-day forecast,
and other details about the current
day. Scroll down toward the middle
of the page to the History & Almanac
panel, as shown in Figure 2-2. Notice
the drop-down menu where you can
select a specific date.

Figure 2-2 ​ Drop-down menu to see
historical data for a selected date

G athe r D ata 29

Adjust the menu to show October 1, 2010, and click the View button. This
takes you to a different view that shows you details for your selected date
(see Figure 2-3).

Figure 2-3 ​ Temperature data for a single day

There’s temperature, degree days, moisture, precipitation, and plenty of
other data points, but for now, all you’re interested in is maximum temper-
ature per day, which you can find in the second column, second row down.
On October 1, 2010, the maximum temperature in Buffalo was 62 degrees
Fahrenheit.

Getting that single value was easy enough. Now how can you get that max-
imum temperature value every day, during the year 2009? The easy-and-
straightforward way would be to keep changing the date in the drop-down.
Do that 365 times and you’re done.

Wouldn’t that be fun? No. You can speed up the process with a little bit of
code and some know-how, and for that, turn to the Python programming
language and Leonard Richardson’s Python library called Beautiful Soup.

You’re about to get your first taste of code in the next few paragraphs.
If you have programming experience, you can go through the following

c h a P t e r 2: H a n d l i n g D ata30

relatively quickly. Don’t worry if you don’t have any programming experi-
ence though—I’ll take you through it step-by-step. A lot of people like to
keep everything within a safe click interface, but trust me. Pick up just a
little bit of programming skills, and you can open up a whole bag of pos-
sibilities for what you can do with data. Ready? Here you go.

First, you need to make sure your computer has all the right software
installed. If you work on Mac OS X, you should have Python installed
already. Open the Terminal application and type python to start (see
Figure 2-4).

Figure 2-4 ​ Starting Python in OS X

If you’re on a Windows machine, you can visit the Python site and follow
the directions on how to download and install.

Next, you need to download Beautiful Soup, which can help you read web
pages quickly and easily. Save the Beautiful Soup Python (.py) file in the
directory that you plan to save your code in. If you know your way around
Python, you can also put Beautiful Soup in your library path, but it’ll work
the same either way.

After you install Python and download Beautiful Soup, start a file in your
favorite text or code editor, and save it as get-weather-data.py. Now you can
code.

 Visit http://
python.org to
download and in-
stall Python. Don’t
worry; it’s not too
hard.

 Visit
www.­crummy­

.com/­software/­

BeautifulSoup/ to
download Beauti-
ful Soup. Down-
load the version
that matches the
version of Python
that you use.

G athe r D ata 31

The first thing you need to do is load the page that shows historical weather
information. The URL for historical weather in Buffalo on October 1, 2010,
follows:

www.wunderground.com/history/airport/KBUF/2010/10/1/DailyHistory

.html?req_city=NA&req_state=NA&req_statename=NA

If you remove everything after .html in the preceding URL, the same page
still loads, so get rid of those. You don’t care about those right now.

www.wunderground.com/history/airport/KBUF/2010/10/1/DailyHistory.html

The date is indicated in the URL with /2010/10/1. Using the drop-down
menu, change the date to January 1, 2009, because you’re going to scrape
temperature for all of 2009. The URL is now this:

www.wunderground.com/history/airport/KBUF/2009/1/1/DailyHistory.html

Everything is the same as the URL for October 1, except the portion
that indicates the date. It’s /2009/1/1 now. Interesting. Without using the
drop-down menu, how can you load the page for January 2, 2009? Simply
change the date parameter so that the URL looks like this:

www.wunderground.com/history/airport/KBUF/2009/1/2/DailyHistory.html

Load the preceding URL in your browser and you get the historical sum-
mary for January 2, 2009. So all you have to do to get the weather for a
specific date is to modify the Weather Underground URL. Keep this in mind
for later.

Now load a single page with Python, using the urllib2 library by importing
it with the following line of code:

import urllib2

To load the January 1 page with Python, use the urlopen function.

page = urllib2.urlopen(“www.wunderground.com/history/airport/

KBUF/2009/1/1/DailyHistory.html”)

This loads all the HTML that the URL points to in the page variable. The
next step is to extract the maximum temperature value you’re interested

c h a P t e r 2: H a n d l i n g D ata32

in from that HTML, and for that, Beautiful Soup makes your task much
easier. After urllib2, import Beautiful Soup like so:

from BeautifulSoup import BeautifulSoup

At the end of your file, use Beautiful Soup to read (that is, parse) the page.

soup = BeautifulSoup(page)

Without getting into nitty-gritty details, this line of code reads the HTML,
which is essentially one long string, and then stores elements of the page,
such as the header or images, in a way that is easier to work with.

For example, if you want to find all the images in the page, you can
use this:

images = soup.findAll(‘img’)

This gives you a list of all the images on the Weather Underground page
displayed with the HTML tag. Want the first image on the page? Do
this:

first_image = images[0]

Want the second image? Change the zero to a one. If you want the src value
in the first tag, you would use this:

src = first_image[‘src’]

Okay, you don’t want images. You just want that one value: maximum
temperature on January 1, 2009, in Buffalo, New York. It was 26 degrees
Fahrenheit. It’s a little trickier finding that value in your soup than it was
finding images, but you still use the same method. You just need to figure
out what to put in findAll(), so look at the HTML source.

You can easily do this in all the major browsers. In Firefox, go to the View
menu, and select Page Source. A window with the HTML for your current
page appears, as shown in Figure 2-5.

Scroll down to where it shows Mean Temperature, or just search for it,
which is faster. Spot the 26. That’s what you want to extract.

The row is enclosed by a tag with a nobr class. That’s your key. You
can find all the elements in the page with the nobr class.

nobrs = soup.findAll(attrs={“class”:”nobr”})

�
Beautiful Soup
provides good
documentation
and straightfor-
ward examples,
so if any of this
is confusing, I
strongly encour-
age you to check
those out on the
same Beautiful
Soup site you used
to download the
library.

note

G athe r D ata 33

Figure 2-5 ​ HTML source for a page on Weather Underground

As before, this gives you a list of all the occurrences of nobr. The one that
you’re interested in is the sixth occurrence, which you can find with the
following:

print nobrs[5]

This gives you the whole element, but you just want the 26. Inside the
 tag with the nobr class is another tag and then the 26. So
here’s what you need to use:

dayTemp = nobrs[5].span.string

print dayTemp

Ta Da! You scraped your first value from an HTML web page. Next step:
scrape all the pages for 2009. For that, return to the original URL.

www.wunderground.com/history/airport/KBUF/2009/1/1/DailyHistory.html

c h a P t e r 2: H a n d l i n g D ata34

Remember that you changed the URL manually to get the weather data for
the date you want. The preceding code is for January 1, 2009. If you want
the page for January 2, 2009, simply change the date portion of the URL
to match that. To get the data for every day of 2009, load every month (1
through 12) and then load every day of each month. Here’s the script in full
with comments. Save it to your get-weather-data.py file.

import urllib2

from BeautifulSoup import BeautifulSoup

Create/open a file called wunder.txt (which will be a comma-delimited

file)

f = open(‘wunder-data.txt’, ‘w’)

Iterate through months and day

for m in range(1, 13):

 for d in range(1, 32):

 # Check if already gone through month

 if (m == 2 and d > 28):

 break

 elif (m in [4, 6, 9, 11] and d > 30):

 break

 # Open wunderground.com url

 timestamp = ‘2009’ + str(m) + str(d)

 print “Getting data for “ + timestamp

 url = “http://www.wunderground.com/history/airport/KBUF/2009/” +

str(m) + “/” + str(d) + “/DailyHistory.html”

 page = urllib2.urlopen(url)

 # Get temperature from page

 soup = BeautifulSoup(page)

 # dayTemp = soup.body.nobr.b.string

 dayTemp = soup.findAll(attrs={“class”:”nobr”})[5].span.string

 # Format month for timestamp

 if len(str(m)) < 2:

 mStamp = ‘0’ + str(m)

 else:

 mStamp = str(m)

 # Format day for timestamp

G athe r D ata 35

 if len(str(d)) < 2:

 dStamp = ‘0’ + str(d)

 else:

 dStamp = str(d)

 # Build timestamp

 timestamp = ‘2009’ + mStamp + dStamp

 # Write timestamp and temperature to file

 f.write(timestamp + ‘,’ + dayTemp + ‘\n’)

Done getting data! Close file.

f.close()

You should recognize the first two lines of code to import the necessary
libraries, urllib2 and BeautifulSoup.

import urllib2

from BeautifulSoup import BeautifulSoup

Next, start a text file called wunder-data-txt with write permissions, using
the open() method. All the data that you scrape will be stored in this text
file, in the same directory that you saved this script in.

Create/open a file called wunder.txt (which will be a comma-delimited

file)

f = open(‘wunder-data.txt’, ‘w’)

With the next line of code, use a for loop, which tells the computer to visit
each month. The month number is stored in the m variable. The loop that
follows then tells the computer to visit each day of each month. The day
number is stored in the d variable.

Iterate through months and day

for m in range(1, 13):

 for d in range(1, 32):

Notice that you used range (1, 32) to iterate through the days. This means
you can iterate through the numbers 1 to 31. However, not every month
of the year has 31 days. February has 28 days; April, June, September,
and November have 30 days. There’s no temperature value for April 31
because it doesn’t exist. So check what month it is and act accordingly. If
the current month is February and the day is greater than 28, break and

 See Python
documentation
for more on how
loops and itera-
tion work: http://
docs.python­

.org/reference/­

compound_stmts­

.html

c h a P t e r 2: H a n d l i n g D ata36

move on to the next month. If you want to scrape multiple years, you need
to use an additional if statement to handle leap years.

Similarly, if it’s not February, but instead April, June, September, or
November, move on to the next month if the current day is greater than 30.

 # Check if already gone through month

 if (m == 2 and d > 28):

 break

 elif (m in [4, 6, 9, 11] and d > 30):

 break

Again, the next few lines of code should look familiar. You used them to
scrape a single page from Weather Underground. The difference is in
the month and day variable in the URL. Change that for each day instead
of leaving it static; the rest is the same. Load the page with the urllib2
library, parse the contents with Beautiful Soup, and then extract the maxi-
mum temperature, but look for the sixth appearance of the nobr class.

 # Open wunderground.com url

 url = “http://www.wunderground.com/history/airport/KBUF/2009/” +

str(m) + “/” + str(d) + “/DailyHistory.html”

 page = urllib2.urlopen(url)

 # Get temperature from page

 soup = BeautifulSoup(page)

 # dayTemp = soup.body.nobr.b.string

 dayTemp = soup.findAll(attrs={“class”:”nobr”})[5].span.string

The next to last chunk of code puts together a timestamp based on the
year, month, and day. Timestamps are put into this format: yyyymmdd. You
can construct any format here, but keep it simple for now.

 # Format day for timestamp

 if len(str(d)) < 2:

 dStamp = ‘0’ + str(d)

 else:

 dStamp = str(d)

 # Build timestamp

 timestamp = ‘2009’ + mStamp + dStamp

Finally, the temperature and timestamp are written to ‘wunder-data.txt’
using the write() method.

G athe r D ata 37

 # Write timestamp and temperature to file

 f.write(timestamp + ‘,’ + dayTemp + ‘\n’)

Then use close()when you finish with all the months and days.

Done getting data! Close file.

f.close()

The only thing left to do is run the code, which you do in your terminal with
the following:

$ python get-weather-data.py

It takes a little while to run, so be patient. In the process of running, your
computer is essentially loading 365 pages, one for each day of 2009. You
should have a file named wunder-data.txt in your working directory when
the script is done running. Open it up, and there’s your data, as a comma-
separated file. The first column is for the timestamps, and the second col-
umn is temperatures. It should look similar to Figure 2-6.

Figure 2-6 ​ One year’s worth of scraped temperature data

Generalizing the Example

Although you just scraped weather data from Weather Underground, you
can generalize the process for use with other data sources. Data scraping
typically involves three steps:

1.	 Identify the patterns.

2.	 Iterate.

3.	 Store the data.

c h a P t e r 2: H a n d l i n g D ata38

In this example, you had to find two patterns. The first was in the URL,
and the second was in the loaded web page to get the actual temperature
value. To load the page for a different day in 2009, you changed the month
and day portions of the URL. The temperature value was enclosed in the
sixth occurrence of the nobr class in the HTML page. If there is no obvious
pattern to the URL, try to figure out how you can get the URLs of all the
pages you want to scrape. Maybe the site has a site map, or maybe you can
go through the index via a search engine. In the end, you need to know all
the URLs of the pages of data.

After you find the patterns, you iterate. That is, you visit all the pages pro-
grammatically, load them, and parse them. Here you did it with Beautiful
Soup, which makes parsing XML and HTML easy in Python. There’s prob-
ably a similar library if you choose a different programming language.

Lastly, you need to store it somewhere. The easiest solution is to store
the data as a plain text file with comma-delimited values, but if you have a
database set up, you can also store the values in there.

Things can get trickier as you run into web pages that use JavaScript to
load all their data into view, but the process is still the same.

Formatting Data
Different visualization tools use different data formats, and the structure
you use varies by the story you want to tell. So the more flexible you are
with the structure of your data, the more possibilities you can gain. Make
use of data formatting applications, and couple that with a little bit of pro-
gramming know-how, and you can get your data in any format you want to
fit your specific needs.

The easy way of course is to find a programmer who can format and parse
all of your data, but you’ll always be waiting on someone. This is especially
evident during the early stages of any project where iteration and data
exploration are key in designing a useful visualization. Honestly, if I were
in a hiring position, I’d likely just get the person who knows how to work
with data, over the one who needs help at the beginning of every project.

For matting D ata 39

What I Learned about Formatting

When I first learned statistics in high school, the data was always
provided in a nice, rectangular format. All I had to do was plug
some numbers into an Excel spreadsheet or my awesome graphing
calculator (which was the best way to look like you were working in
class, but actually playing Tetris). That’s how it was all the way through
my undergraduate education. Because I was learning about techniques
and theorems for analyses, my teachers didn’t spend any time on
working with raw, preprocessed data. The data always seemed to be in
just the right format.

This is perfectly understandable, given time constraints and such, but
in graduate school, I realized that data in the real world never seems to
be in the format that you need. There are missing values, inconsistent
labels, typos, and values without any context. Often the data is spread
across several tables, but you need everything in one, joined across a
value, like a name or a unique id number.

This was also true when I started to work with visualization. It became
increasingly important because I wanted to do more with the data I had.
Nowadays, it’s not out of the ordinary that I spend just as much time
getting data in the format that I need as I do putting the visual part of
a data graphic together. Sometimes I spend more time getting all my
data in place. This might seem strange at first, but you’ll find that the
design of your data graphics comes much easier when you have your
data neatly organized, just like it was back in that introductory statistics
course in high school.

Various data formats, the tools available to deal with these formats, and
finally, some programming, using the same logic you used to scrape data
in the previous example are described next.

Data Formats
Most people are used to working with data in Excel. This is fine if you’re
going to do everything from analyses to visualization in the program,
but if you want to step beyond that, you need to familiarize yourself with
other data formats. The point of these formats is to make your data

c h a P t e r 2: H a n d l i n g D ata40

machine-readable, or in other words, to structure your data in a way that a
computer can understand. Which data format you use can change by visu-
alization tool and purpose, but the three following formats can cover most
of your bases: delimited text, JavaScript Object Notation, and Extensible
Markup Language.

Delimited Text

Most people are familiar with delimited text. You did after all just make a
comma-delimited text file in your data scraping example. If you think of a
dataset in the context of rows and columns, a delimited text file splits col-
umns by a delimiter. The delimiter is a comma in a comma-delimited file.
The delimiter might also be a tab. It can be spaces, semicolons, colons,
slashes, or whatever you want; although a comma and tab are the most
common.

Delimited text is widely used and can be read into most spreadsheet pro-
grams such as Excel or Google Documents. You can also export spread-
sheets as delimited text. If multiple sheets are in your workbook, you usu-
ally have multiple delimited files, unless you specify otherwise.

This format is also good for sharing data with others because it doesn’t
depend on any particular program.

JavaScript Object Notation (JSON)

This is a common format offered by web APIs. It’s designed to be both
machine- and human-readable; although, if you have a lot of it in front of
you, it’ll probably make you cross-eyed if you stare at it too long. It’s based
on JavaScript notation, but it’s not dependent on the language. There are a
lot of specifications for JSON, but you can get by for the most part with just
the basics.

JSON works with keywords and values, and treats items like objects. If
you were to convert JSON data to comma-separated values (CSV), each
object might be a row.

As you can see later in this book, a number of applications, languages, and
libraries accept JSON as input. If you plan to design data graphics for the
web, you’re likely to run into this format.

 Visit http://
json.org for the
full specification
of JSON. You don’t
need to know
every detail of
the format, but it
can be handy at
times when you
don’t understand a
JSON data source.

For matting D ata 41

Extensible Markup Language (XML)

XML is another popular format on the web, often used to transfer data via
APIs. There are lots of different types and specifications for XML, but at
the most basic level, it is a text document with values enclosed by tags.
For example, the Really Simple Syndication (RSS) feed that people use to
subscribe to blogs, such as FlowingData, is actually an XML file, as shown
in Figure 2-7.

The RSS lists recently published items enclosed in the <item></item> tag,
and each item has a title, description, author, and publish date, along with
some other attributes.

Figure 2-7 ​ Snippet of FlowingData’s RSS feed

c h a P t e r 2: H a n d l i n g D ata42

XML is relatively easy to parse with libraries such as Beautiful Soup in
Python. You can get a better feel for XML, along with CSV and JSON, in the
sections that follow.

Formatting Tools
Just a couple of years ago, quick scripts were always written to handle and
format data. After you’ve written a few scripts, you start to notice patterns
in the logic, so it’s not super hard to write new scripts for specific data-
sets, but it does take time. Luckily, with growing volumes of data, some
tools have been developed to handle the boiler plate routines.

Google Refine

Google Refine is the evolution of Freebase Gridworks. Gridworks was first
developed as an in-house tool for an open data platform, Freebase; how-
ever, Freebase was acquired by Google, therefore the new name. Google
Refine is essentially Gridworks 2.0 with an easier-to-use interface (Fig-
ure 2-8) with more features.

It runs on your desktop (but still through your browser), which is great,
because you don’t need to worry about uploading private data to Google’s
servers. All the processing happens on your computer. Refine is also open
source, so if you feel ambitious, you can cater the tool to your own needs
with extensions.

When you open Refine, you see a familiar spreadsheet interface with your
rows and columns. You can easily sort by field and search for values. You
can also find inconsistencies in your data and consolidate in a relatively
easy way.

For example, say for some reason you have an inventory list for your
kitchen. You can load the data in Refine and quickly find inconsistencies
such as typos or differing classifications. Maybe a fork was misspelled as
“frk,” or you want to reclassify all the forks, spoons, and knives as uten-
sils. You can easily find these things with Refine and make changes. If you
don’t like the changes you made or make a mistake, you can revert to the
old dataset with a simple undo.

For matting D ata 43

Figure 2-8 ​ Google Refine user interface

Getting into the more advanced stuff, you can also incorporate data sources
like your own with a dataset from Freebase to create a richer dataset.

If anything, Google Refine is a good tool to keep in your back pocket. It’s
powerful, and it’s a free download, so I highly recommend you at least
fiddle around with the tool.

Mr. Data Converter

Often, you might get all your data in Excel but then need to convert it to
another format to fit your needs. This is almost always the case when you

 Download
the open-source
Google Refine
and view tutorials
on how to make
the most out of
the tool at http://
code.google.com/

p/google-refine/.

c h a P t e r 2: H a n d l i n g D ata44

create graphics for the web. You can already export Excel spreadsheets as
CSV, but what if you need something other than that? Mr. Data Converter
can help you.

Mr. Data Converter is a simple and free tool created by Shan Carter, who is
a graphics editor for The New York Times. Carter spends most of his work
time creating interactive graphics for the online version of the paper. He
has to convert data often to fit the software that he uses, so it’s not sur-
prising he made a tool that streamlines the process.

It’s easy to use, and Figure 2-9 shows that the interface is equally as
simple. All you need to do is copy and paste data from Excel in the input
section on the top and then select what output format you want in the bot-
tom half of the screen. Choose from variants of XML, JSON, and a number
of others.

Figure 2-9 ​ Mr. Data Converter makes switching between data formats easy.

For matting D ata 45

The source code to Mr. Data Converter is also available if you want to
make your own or extend.

Mr. People

Inspired by Carter’s Mr. Data Converter, The New York Times graphics dep-
uty director Matthew Ericson created Mr. People. Like Mr. Data Converter,
Mr. People enables you to copy and paste data into a text field, and the tool
parses and extracts for you. Mr. People, however, as you might guess, is
specifically for parsing names.

Maybe you have a long list of names without a specific format, and you
want to identify the first and last names, along with middle initial, prefix,
and suffix. Maybe multiple people are listed on a single row. That’s where
Mr. People comes in. Copy and paste names, as shown in Figure 2-10, and
you get a nice clean table that you can copy into your favorite spreadsheet
software, as shown in Figure 2-11.

Like Mr. Data Converter, Mr. People is also available as open-source soft-
ware on github.

Spreadsheet Software

Of course, if all you need is simple sorting, or you just need to make some
small changes to individual data points, your favorite spreadsheet soft-
ware is always available. Take this route if you’re okay with manually edit-
ing data. Otherwise, try the preceding first (especially if you have a giganto
dataset), or go with a custom coding solution.

Figure 2-10 ​ Input page for names on Mr. People

 Try out Mr. Data
Converter at www
.shancarter.com/

data_converter/

or download the
source on github
at https://github
.com/shancarter/

Mr-Data-Converter
to convert your
Excel spreadsheets
to a web-friendly
format.

 Use Mr. People
at http://people
.ericson.net/
or download the
Ruby source on
github to use the
name parser in
your own scripts:
http://github

.com/mericson/

people.

c h a P t e r 2: H a n d l i n g D ata46

Figure 2-11 ​ Parsed names in table format with Mr. People

Formatting with Code
Although point-and-click software can be useful, sometimes the applica-
tions don’t quite do what you want if you work with data long enough. Some
software doesn’t handle large data files well; they get slow or they crash.

What do you do at this point? You can throw your hands in the air and give
up; although, that wouldn’t be productive. Instead, you can write some

For matting D ata 47

code to get the job done. With code you become much more flexible, and
you can tailor your scripts specifically for your data.

Now jump right into an example on how to easily switch between data for-
mats with just a few lines of code.

Example: Switch Between Data Formats

This example uses Python, but you can of course use any language you
want. The logic is the same, but the syntax will be different. (I like to
develop applications in Python, so managing raw data with Python fits into
my workflow.)

Going back to the previous example on scraping data, use the resulting
wunder-data.txt file, which has dates and temperatures in Buffalo, New
York, for 2009. The first rows look like this:

20090101,26

20090102,34

20090103,27

20090104,34

20090105,34

20090106,31

20090107,35

20090108,30

20090109,25

...

This is a CSV file, but say you want the data as XML in the following format:

<weather_data>

 <observation>

 <date>20090101</date>

 <max_temperature>26</max_temperature>

 </observation>

 <observation>

 <date>20090102</date>

 <max_temperature>34</max_temperature>

 </observation>

 <observation>

 <date>20090103</date>

 <max_temperature>27</max_temperature>

 </observation>

 <observation>

c h a P t e r 2: H a n d l i n g D ata48

 <date>20090104</date>

 <max_temperature>34</max_temperature>

 </observation>

 ...

</weather_data>

Each day’s temperature is enclosed in <observation> tags with a <date> and
the <max_temperature>.

To convert the CSV into the preceding XML format, you can use the follow-
ing code snippet:

import csv

reader = csv.reader(open(‘wunder-data.txt’, ‘r’), delimiter=”,”)

print ‘<weather_data>’

for row in reader:

 print ‘<observation>’

 print ‘<date>’ + row[0] + ‘</date>’

 print ‘<max_temperature>’ + row[1] + ‘</max_temperature>’

 print ‘</observation>’

print ‘</weather_data>’

As before, you import the necessary modules. You need only the csv mod-
ule in this case to read in wunder-data.txt.

import csv

The second line of code opens wunder-data.txt to read using open() and
then reads it with the csv.reader() method.

reader = csv.reader(open(‘wunder-data.txt’, ‘r’), delimiter=”,”)

Notice the delimiter is specified as a comma. If the file were a tab-
delimited file, you could specify the delimiter as ‘\t’.

Then you can print the opening line of the XML file in line 3.

print ‘<weather_data>’

In the main chunk of the code, you can loop through each row of data and
print in the format that you need the XML to be in. In this example, each
row in the CSV header is equivalent to each observation in the XML.

for row in reader:

 print ‘<observation>’

For matting D ata 49

 print ‘<date>’ + row[0] + ‘</date>’

 print ‘<max_temperature>’ + row[1] + ‘</max_temperature>’

 print ‘</observation>’

Each row has two values: the date and the maximum temperature.

End the XML conversion with its closing tag.

print ‘</weather_data>’

Two main things are at play here. First, you read the data in, and then you
iterate over the data, changing each row in some way. It’s the same logic
if you were to convert the resulting XML back to CSV. As shown in the fol-
lowing snippet, the difference is that you use a different module to parse
the XML file.

from BeautifulSoup import BeautifulStoneSoup

f = open(‘wunder-data.xml’, ‘r’)

xml = f.read()

soup = BeautifulStoneSoup(xml)

observations = soup.findAll(‘observation’)

for o in observations:

 print o.date.string + “,” + o.max_temperature.string

The code looks different, but you’re basically doing the same thing.
Instead of importing the csv module, you import BeautifulStoneSoup from
BeautifulSoup. Remember you used BeautifulSoup to parse the HTML from
Weather Underground. BeautifulStoneSoup parses the more general XML.

You can open the XML file for reading with open() and then load the con-
tents in the xml variable. At this point, the contents are stored as a string.
To parse, pass the xml string to BeautifulStoneSoup to iterate through each
<observation> in the XML file. Use findAll() to fetch all the observations,
and finally, like you did with the CSV to XML conversion, loop through each
observation, printing the values in your desired format.

This takes you back to where you began:

20090101,26

20090102,34

20090103,27

20090104,34

...

c h a P t e r 2: H a n d l i n g D ata50

To drive the point home, here’s the code to convert your CSV to JSON
format.

import csv

reader = csv.reader(open(‘wunder-data.txt’, ‘r’), delimiter=”,”)

print “{ observations: [“

rows_so_far = 0

for row in reader:

 rows_so_far += 1

 print ‘{‘

 print ‘“date”: ‘ + ‘“‘ + row[0] + ‘“, ‘

 print ‘“temperature”: ‘ + row[1]

 if rows_so_far < 365:

 print “ },”

 else:

 print “ }”

print “] }”

Go through the lines to figure out what’s going on, but again, it’s the same
logic with different output. Here’s what the JSON looks like if you run the
preceding code.

{

 “observations”: [

 {

 “date”: “20090101”,

 “temperature”: 26

 },

 {

 “date”: “20090102”,

 “temperature”: 34

 },

 ...

]

}

This is still the same data, with date and temperature but in a different
format. Computers just love variety.

For matting D ata 51

Put Logic in the Loop

If you look at the code to convert your CSV file to JSON, you should notice
the if-else statement in the for loop, after the three print lines. This checks
if the current iteration is the last row of data. If it isn’t, don’t put a comma
at the end of the observation. Otherwise, you do. This is part of the JSON
specification. You can do more here.

You can check if the max temperature is more than a certain amount and
create a new field that is 1 if a day is more than the threshold, or 0 if it is
not. You can create categories or flag days with missing values.

Actually, it doesn’t have to be just a check for a threshold. You can calcu-
late a moving average or the difference between the current day and the
previous. There are lots of things you can do within the loop to augment
the raw data. Everything isn’t covered here because you can do anything
from trivial changes to advanced analyses, but now look at a simple
example.

Going back to your original CSV file, wunder-data.txt, create a third column
that indicates whether a day’s maximum temperature was at or below
freezing. A 0 indicates above freezing, and 1 indicates at or below freezing.

import csv

reader = csv.reader(open(‘wunder-data.txt’, ‘r’), delimiter=”,”)

for row in reader:

 if int(row[1]) <= 32:

 is_freezing = ‘1’

 else:

 is_freezing = ‘0’

 print row[0] + “,” + row[1] + “,” + is_freezing

Like before, read the data from the CSV file into Python, and then iterate
over each row. Check each day and flag accordingly.

This is of course a simple example, but it should be easy to see how you
can expand on this logic to format or augment your data to your liking.
Remember the three steps of load, loop, and process, and expand from
there.

c h a P t e r 2: H a n d l i n g D ata52

Wrapping Up
This chapter covered where you can find the data you need and how to
manage it after you have it. This is an important step, if not the most
important, in the visualization process. A data graphic is only as interest-
ing as its underlying data. You can dress up a graphic all you want, but the
data (or the results from your analysis of the data) is still the substance;
and now that you know where and how to get your data, you’re already a
step ahead of the pack.

You also got your first taste of programming. You scraped data from a
website and then formatted and rearranged that data, which will be a use-
ful trick in later chapters. The main takeaway, however, is the logic in the
code. You used Python, but you easily could have used Ruby, Perl, or PHP.
The logic is the same across languages. When you learn one programming
language (and if you’re a programmer already, you can attest to this), it’s
much easier to learn other languages later.

You don’t always have to turn to code. Sometimes there are click-and-drag
applications that make your job a lot easier, and you should take advantage
of that when you can. In the end, the more tools you have in your toolbox,
the less likely you’re going to get stuck somewhere in the process.

Okay, you have your data. Now it’s time to get visual.

Choosing Tools to
Visualize Data

In the last chapter, you learned where to find your data and how to get
it in the format you need, so you’re ready to start visualizing. One of
the most common questions people ask me at this point is “What soft-
ware should I use to visualize my data?”

Luckily, you have a lot of options. Some are out-of-the-box and click-
and-drag. Others require a little bit of programming, whereas some
tools weren’t designed specifically for data graphics but are useful
nevertheless. This chapter covers these options.

The more visualization tools you know how to use and take advantage
of, the less likely you’ll get stuck not knowing what to do with a dataset
and the more likely you can make a graphic that matches your vision.

3

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata54

Out-of-the-Box Visualization
The out-of-the-box solutions are by far the easiest for beginners to pick
up. Copy and paste some data or load a CSV file and you’re set. Just click
the graph type you want—maybe change some options here and there.

Options
The out-of-the-box tools available vary quite a bit, depending on the appli-
cation they’ve been designed for. Some, such as Microsoft Excel or Google
Documents, are meant for basic data management and graphs, whereas
others were built for more thorough analyses and visual exploration.

Microsoft Excel

You know this one. You have the all-familiar spreadsheet where you put
your data, such as in Figure 3-1.

Figure 3-1 ​ Microsoft Excel spreadsheet

Ou t- of-t he-B ox V is ua li z atio n 55

Then you can click the button with the little bar graph on it to make the
chart you want. You get all your standard chart types (Figure 3-2) such as
the bar chart, line, pie, and scatterplot.

Some people scoff at Excel, but it’s not all that bad for the right tasks. For
example, I don’t use Excel for any sort of deep analyses or graphics for a
publication, but if I get a small dataset in an Excel file, as is often the case,
and I want a quick feel for what is in front of me, then sure, I’ll whip up a
graph with a few clicks in everyone’s favorite spreadsheet program.

Graphs Really Can Be Fun

The first graph I made on a computer was in Microsoft Excel for my
fifth grade science fair project. My project partner and I tried to find
out which surface snails moved on the fastest. It was ground-breaking
research, I assure you.

Even back then I remember enjoying the graph-making. It took me
forever to learn (the computer was still new to me), but when I finally
did, it was a nice treat. I entered numbers in a spreadsheet and then got
a graph instantly that I could change to any color I wanted—blinding,
bright yellow it is.

Figure 3-2 ​ Microsoft Excel chart options

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata56

This ease of use is what makes Excel so appealing to the masses, and
that’s fine. If you want higher quality data graphics, don’t stop here. Other
tools are a better fit for that.

Google Spreadsheets

Google Spreadsheets is essentially the cloud version of Microsoft Excel
with the familiar spreadsheet interface, obviously (Figure 3-3).

Figure 3-3 ​ Google Spreadsheets

It also offers your standard chart types, as shown in Figure 3-4.

Google Spreadsheets offers some advantages over Excel, how-
ever. First, because your data is stored on the Google servers,
you can see your data on any computer as long as it has a web
browser installed. Log in to your Google account and go. You can
also easily share your spreadsheet with others and collaborate
in real-time. Google Spreadsheets also offers some additional
charting options via the Gadget option, as shown in Figure 3-5.

Figure 3-4 ​ Google Spreadsheets
charting options

Ou t- of-t he-B ox V is ua li z atio n 57

A lot of the gadgets are useless, but a few good ones are available. You can,
for example, easily make a motion chart with your time series data (just like
Hans Rosling). There’s also an interactive time series chart that you might
be familiar with if you’ve visited Google Finance, as shown in Figure 3-6.

Figure 3-5 ​ Google gadgets

Figure 3-6 ​ Google Finance

P Visit Google
Docs at http://
docs.google.com to
try spreadsheets.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata58

Many Eyes

Many Eyes is an ongoing research project by the IBM Visual Communica-
tion Lab. It’s an online application that enables you to upload your data
as a text-delimited file and explore through a set of interactive visualiza-
tion tools. The original premise of Many Eyes was to see if people could
explore large datasets as groups—therefore the name. If you have a lot
of eyes on a large dataset, can a group find interesting points in the data
quicker or more efficiently or find things in the data that you would not
have found on your own?

Although social data analyses never caught on with Many Eyes, the tools
can still be useful to the individual. Most traditional visualization types
are available, such as the line graph (Figure 3-7) and the scatterplot
(Figure 3-8).

One of the great things about all the visualizations on Many Eyes is that
they are interactive and provide a number of customization options. The
scatterplot, for example, enables you to scale dots by a third metric, and
you can view individual values by rolling over a point of interest.

Figure 3-7 ​ Line graph on Many Eyes

Ou t- of-t he-B ox V is ua li z atio n 59

Figure 3-8 ​ Scatterplot on Many Eyes

Many Eyes also provides a variety of more advanced and experimental
visualizations, along with some basic mapping tools. A word tree helps you
explore a full body of text, such as in a book or news article. You choose a
word or a phrase, and you can see how your selection is used throughout
the text by looking at what follows. Figure 3-9, for example, shows the
results of a search for right in the United States Constitution.

Figure 3-9 ​ Word tree on Many Eyes showing parts of the United States Constitution

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata60

Alternatively, you can easily switch between tools, using the same data.
Figure 3-10 shows the Constitution visualized with a stylized word cloud,
known as a Wordle. Words used more often are sized larger.

Figure 3-10 ​ Wordle of the United States Constitution

As you can see, Many Eyes has a lot of options to help you play with your
data and is by far the most-extensive (and in my eyes, the best) free tool
for data exploration; however, a couple of caveats exist. The first is that
most of the tools are Java applets, so you can’t do much if you don’t have
Java installed. (This isn’t a big deal for most, but I know some people,
for whatever reason, who are particular about what they put on their
computer.)

The other caveat, which can be a deal breaker, is that all the data you
upload to the site is in the public domain. So you can’t use Many Eyes, for
example, to dig into customer information or sales made by your business.

Tableau Software

Tableau Software, which is Windows-only software, is relatively new but has
been growing in popularity for the past couple of years. It’s designed mainly
to explore and analyze data visually. It’s clear that careful thought has been
given to aesthetics and design, which is why so many people like it.

Tableau Software offers lots of interactive visualization tools and does a
good job with data management, too. You can import data from Excel, text
files, and database servers. Standard time series charts, bar graphs, pie

P Try uploading
and visualizing your
own data http://
many-eyes.com.

Ou t- of-t he-B ox V is ua li z atio n 61

charts, basic mapping, and so on are available. You can mix and match
these displays, hook in a dynamic data source for a custom view, or a
dashboard, for a snapshot of what’s going on in your data.

Most recently, Tableau released Tableau Public, which is free and offers
a subset of the functionality in the desktop editions. You can upload your
data to Tableau’s servers, build an interactive display, and easily publish
it to your website or blog. Any data you upload to the servers though, like
with Many Eyes, does become publicly available, so keep that in mind.

If you want to use Tableau and keep your data private, you need to go with
the desktop editions. At the time of this writing, the desktop software is on
the pricier side at $999 and $1,999 for the Personal and Professional edi-
tions, respectively.

your.flowingdata

My interest in personal data collection inspired my own application, your.
flowingdata (YFD). It’s an online application that enables you to collect
data via Twitter and then explore patterns and relationships with a set of
interactive visualization tools. Some people track their eating habits or
when they go to sleep and wake up. Others have logged the habits of their
newborn as sort of a baby scrapbook, with a data twist.

YFD was originally designed with personal data in mind, but many have
found the application useful for more general types of data collection,
such as web activity or train arrivals and departures.

Trade-Offs
Although these tools are easy to use, there are some drawbacks. In
exchange for click-and-drag, you give up some flexibility in what you can
do. You can usually change colors, fonts, and titles, but you’re restricted
to what the software offers. If there is no button for the chart you want,
you’re out of luck.

On the flip side, some software might have a lot of functions, but in turn
have a ton of buttons that you need to learn. For example, there was one
program (not listed here) that I took a weekend crash course for, and it
was obvious that it could do a lot if I put in the time. The processes to get
things done though were so counterintuitive that it made me not want to

P Visit
Tableau Soft-
ware at http://
tableausoftware

.com. It has a full-
functioning free
trial.

P Try personal
data collection via
Twitter at http://
your.flowingdata

.com.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata62

learn anymore. It was also hard to repeat my work for different datasets,
because I had to remember everything I clicked. In contrast, when you
write code to handle your data, it’s often easy to reuse code and plug in a
different dataset.

Don’t get me wrong. I’m not saying to avoid out-of-the-box software com-
pletely. They can help you explore your data quickly and easily. But as you
work with more datasets, there will be times when the software doesn’t
fit, and when that time comes you can turn to programming.

Programming
This can’t be stressed enough: Gain just a little bit of programming skills,
and you can do so much more with data than if you were to stick only with
out-of-the-box software. Programming skills give you the ability to be
more flexible and more able to adapt to different types of data.

If you’ve ever been impressed by a data graphic that looked custom-made,
most likely it was coded or designed in illustrative software. A lot of the
time it’s both. The latter is covered a little later.

Code can look cryptic to beginners—I’ve been there. But think of it as a
new language because that’s what it is. Each line of code tells the com-
puter to do something. Your computer doesn’t understand the way you talk
to your friends, so you have to talk to the computer in its own language or
syntax.

Like any language, you can’t immediately start a conversation. Start with
the basics first and then work your way up. Before you know it, you’ll be
coding. The cool thing about programming is that after you learn one lan-
guage, it’s much easier to learn others because the logic is similar.

Options
So you decide to get your hands dirty with code—good for you. A lot of
options are freely available. Some languages are better at performing cer-
tain tasks better than others. Some solutions can handle large amounts
of data, whereas others are not as robust in that department but can
produce much better visuals or provide interaction. Which language you

P rogr a mming 63

use largely depends on what your goals are for a specific data graphic and
what you’re most comfortable with.

Some people stick with one language and get to know it well. This is fine,
and if you’re new to programming, I highly recommend this strategy.
Familiarize yourself with the basics and important concepts of code.

Use the language that best suits your needs. However, it’s fun to learn new
languages and new ways to play with data; so you should develop a good
bit of programming experience before you decide on your favorite solution.

Python

The previous chapter discussed how Python can handle data. Python is
good at that and can handle large amounts of data without crashing. This
makes the language especially useful for analyses and heavy computation.

Python also has a clean and easy-to-read syntax that programmers like,
and you can work off of a lot of modules to create data graphics, such as
the graph in Figure 3-11.

From an aesthetic point of view, it’s not great. You probably don’t want to
take a graphic from Python direct to publication. The output usually looks
kind of rough around the edges. Nevertheless, it can be a good starting
point in the data exploration stages. You might also export images and
then touch them up or add information using graphic editing software.

Figure 3-11 ​ Graph produced in Python

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata64

Useful Python Resources

Official Python website (aa http://python.org)
NumPy and SciPy (aa http://numpy.scipy.org/)—Scientific computing

PHP

PHP was the first language I learned when I started programming for the
web. Some people say it’s messy, which it can be, but you can just as eas-
ily keep it organized. It’s usually an easy setup because most web servers
already have it installed, so it’s easy to jump right in.

There’s a flexible PHP graphics library called GD that’s also
usually included in standard installs. The library enables you to
create images from scratch or manipulate existing ones. Also a
number of PHP graphing libraries exist that enable you to cre-
ate basic charts and graphs. The most popular is the Sparklines
Graphing Library, which enables you to embed small word-size
graphs in text or add a visual component to a numeric table, as
shown in Figure 3-12.

Most of the time PHP is coupled with a database such as MySQL, instead
of working with a lot of CSV files, to maximize usage and to work with hefty
datasets.

Useful PHP Resources

Official PHP website (aa http://php.net)
Sparkline PHP Graphing Library (aa http://sparkline.org)

Processing

Processing is an open-source programming language geared toward
designers and data artists. It started as a coding sketchbook in which you
could produce graphics quickly; however, it developed a lot since its early
days, and many high-quality projects have been created in Processing. For
example, We Feel Fine, mentioned in Chapter 1, “Telling Stories with Data,”
was created in Processing.

Figure 3-12 ​ Sparklines using a PHP
graphing library

P rogr a mming 65

The great thing about Processing is that you can quickly get up and run-
ning. The programming environment is lightweight, and with just a few
lines of code, you can create an animated and interactive graphic. It
would of course be basic, but because it was designed with the creation
of visuals in mind, you can easily learn how to create more advanced
pieces.

Although the audience was originally for designers and artists, the com-
munity around Processing has grown to be a diverse group. Many libraries
can help you do more with the language.

One of the drawbacks is that you do end up with a Java applet, which can
be slow to load on some people’s computers, and not everyone has Java
installed. (Although most people do.) There’s a solution for that, though.
There’s a JavaScript version of Processing recently out of development
and ready to use.

Nevertheless, this is a great place to start for beginners. Even those who
don’t have any programming experience can make something useful.

Useful Processing Resource

Processing (aa http://processing.org)—Official site for Processing

Flash and ActionScript

Most interactive and animated data graphics on the web, especially on major
news sites such as The New York Times, are built in Flash and ActionScript.
You can design graphics in just Flash, which is a click-and-drag interface,
but with ActionScript you have more control over interactions. Many appli-
cations are written completely in ActionScript, without the use of the Flash
environment. However, the code compiles as a Flash application.

For example, an interactive map that animates the growth of Walmart,
as shown in Figure 3-13, was written in ActionScript. The Modest Maps
library was used, which is a display and interaction library for tile-based
maps. It’s BSD-licensed, meaning it’s free, and you can use it for whatever
you want.

�

note

Although there
are many free
and open-source
ActionScript
libraries, Flash
and Flash build-
ers can be pricey,
which you should
consider in your
choice of software.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata66

Figure 3-13 ​ Map animating the growth of Walmart, written in ActionScript

The interactive stacked area chart in Figure 3-14 was also written in
ActionScript. It enables you to search for spending categories over the
years. The Flare ActionScript library by the UC Berkeley Visualization Lab
was used to do most of the heavy lifting.

Figure 3-14 ​ Interactive stacked area chart showing
 consumer spending breakdowns, written in ActionScript

P rogr a mming 67

If you want to get into interactive graphics for the web, Flash and Action-
Script is an excellent option. Flash applications are relatively quick to load,
and most people already have Flash installed on their computers.

It’s not the easiest language to pick up; the syntax isn’t that complicated, but
the setup and code organization can overwhelm beginners. You’re not going
to have an application running with just a few lines of code like you would
with Processing. Later chapters take you through the basic steps, and you
can find a number of useful tutorials online because Flash is so widely used.

Also, as web browsers improve in speed and efficiency, you have a growing
number of alternatives.

Useful Flash and ActionScript Resources

Adobe Support aa www.adobe.com/products/flash/whatisflash/)—
Official documentation for Flash and ActionScript (and other
Adobe products)
Flare Visualization Toolkit (aa http://flare.prefuse.org)
Modest Maps (aa http://modestmaps.com)

HTML, JavaScript, and CSS

Web browsers continue to get faster and improve in functionality. A lot of
people spend more time using their browsers than any other application
on their computers. More recently, there has been a shift toward visualiza-
tion that runs native in your browser via HTML, JavaScript, and CSS. Data
graphics used to be primarily built in Flash and ActionScript if there were
an interactive component or saved as a static image. This is still often the
case, but it used to be that these were the only options.

Now there are several robust packages and libraries that can help you
quickly build interactive and static visualizations. They also provide a lot of
options so that you can customize the tools for your data needs.

For example, Protovis, maintained by the Stanford Visualization Group,
is a free and open-source visualization library that enables you to cre-
ate web-native visualizations. Protovis provides a number of out-of-the-
box visualizations, but you’re not at all limited by what you can make,

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata68

geometrically speaking. Figure 3-15 shows a stacked area chart, which
can be interactive.

This chart type is built into the Protovis, but you can also go with a less
traditional streamgraph, as shown in Figure 3-16.

Figure 3-15 ​ Stacked area chart with Protovis

Figure 3-16 ​ Custom-made streamgraph with Protovis

You can also easily use multiple libraries for increased functionality.
This is possible in Flash, but JavaScript can be a lot less heavy code-
wise. JavaScript is also a lot easier to read and use with libraries such

P rogr a mming 69

as jQuery and MooTools. These are not visualization-specific but are use-
ful. They provide a lot of basic functionality with only a few lines of code.
Without the libraries, you’d have to write a lot more, and your code can
get messy in a hurry.

Plugins for the libraries can also help you with some of your basic graph-
ics. For example, you can use a Sparkline plugin for jQuery to make small
charts (see Figure 3-17).

Figure 3-17 ​ Sparklines with jQuery Sparklines plugin

You can also do this with PHP, but this method has a couple of advantages.
First, the graphic is generated in a user’s browser instead of the server.
This relieves stress off your own machines, which can be an issue if you
have a website with a lot of traffic.

The other advantage is that you don’t need to set up your server with the
PHP graphics library. A lot of servers are set up with graphics installed,
but sometimes they are not. Installation can be tedious if you’re unfamiliar
with the system.

You might not want to use a plugin at all. You can also design a
custom visualization with standard web programming. Figure 3-18,
for example, is an interactive calendar that doubles as a heatmap in
your.flowingdata.

There are, however, a couple of caveats. Because the software and tech-
nology are relatively new, your designs might look different in different
browsers. Some of the previously mentioned tools won’t work correctly
in an old browser such as Internet Explorer 6. This is becoming less of a
problem though, because most people use modern browsers such as Fire-
fox or Google Chrome. In the end it depends on your audience. Less than
5 percent of visitors to FlowingData use old versions of Internet Explorer,
so compatibility isn’t much of an issue.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata70

Figure 3-18 ​ Interactive calendar that also serves as a heatmap in
your.flowingdata

Also related to the age of the technology, there aren’t as many libraries
available for visualization in JavaScript as there are in Flash and Action-
Script. This is why many major news organizations still use a lot of Flash,
but this will change as development continues.

P rogr a mming 71

Useful HTML, JavaScript, and CSS Resources

jQuery (aa http://jquery.com/)—A JavaScript library that makes coding
in the language much more efficient and makes your finished
product easier to read.
jQuery Sparklines (aa http://omnipotent.net/jquery.sparkline/)—
Make static and animated sparklines in JavaScript.
Protovis (aa http://vis.stanford.edu/protovis/)—A visualization-
specific JavaScript library designed to learn by example.
JavaScript InfoVis Toolkit (aa http://datafl.ws/15f)—Another
visualization library, although not quite as developed as Protovis.
Google Charts API (aa http://code.google.com/apis/chart/)—Build
traditional charts on-the-fly, simply by modifying a URL.

R

If you read FlowingData, you probably know that my favorite software for
data graphics is R. It’s free and open-source statistical computing soft-
ware, which also has good statistical graphics functionality. It is also most
statisticians’ analysis software of choice. There are paid alternatives such
as S-plus and SAS, but it’s hard to beat the price of free and an active
development community.

One of the advantages that R has over the previously mentioned software
is that it was specifically designed to analyze data. HTML was designed to
make web pages, and Flash is used for tons of other things, such as video
and animated advertisements. R, on the other hand, was built and is main-
tained by statisticians for statisticians, which can be good and bad depend-
ing on what angle you’re looking from.

There are lots of R packages that enable you to make data graphics with
just a few lines of code. Load your data into R, and you can have a graphic
with even just one line of code. For example, you can quickly make a
treemap using the Portfolio package, as shown in Figure 3-19.

Just as easily, you can build a heatmap, as shown in Figure 3-20.

And of course, you can also make more traditional statistical graphics,
such as scatterplots and time series charts, which are discussed in Chap-
ter 4, “Visualizing Patterns over Time.”

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata72

Figure 3-19 ​ Treemap generated in R with the Portfolio package

Figure 3-20 ​H eatmap generated in R

P rogr a mming 73

To be completely honest though, the R site looks horribly out-dated (Fig-
ure 3-21), and the software itself isn’t very helpful in guiding new users.
You need to remember though that R is a programming language, and
you’re going to get that with any language you use. The few bad things that
I’ve read about R are usually written by people who are used to buttons
and clicking and dragging. So when you come to R don’t expect a clicky
interface, or you will of course find the interface unfriendly.

Figure 3-21 ​ R homepage, www.r-project.org

But get past that, and there’s a lot you can do. You can make publication-
quality graphics (or at least the beginnings of them), and you can learn to
embrace R’s flexibility. If you like, you can write your own functions and
packages to make graphics the way you want, or you can use the ones that
others have made available in the R library.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata74

R provides base drawing functions that basically enable you to draw what
you want. You can draw lines, shapes, and axes within a plotting frame-
work, so again, like the other programming solutions, you’re limited only
by your imagination. Then again, practically every chart type is available
via some R package.

Why would you use anything besides R? Why not just do everything in R?
Following are a few reasons. R works on your desktop, so it’s not a good
fit for the dynamic web. Saving graphics and images and putting them
on a web page isn’t a problem, but it’s not going to happen automatically.
You can generate graphics on-the-fly via the web, but so far, the solutions
aren’t particularly robust when you compare them to the web-native stuff
such as JavaScript.

R is also not good with interactive graphics and animation. Again, you can
do this in R, but there are better, more elegant ways to accomplish this
using, for example, Flash or Processing.

Finally, you might have noticed that the graphics in Figures 3-19 and 3-20
lack a certain amount of polish. You probably won’t see graphics like that
in a newspaper any time soon. You can tighten up the design in R by mess-
ing with different options or writing additional code, but my strategy is
usually to make the base graphic in R and then edit and refine in design
software such as Adobe Illustrator, which is discussed soon. For analyses,
the raw output from R does just fine, but for presentation and storytelling,
it’s best to adjust aesthetics.

Useful R Resource

R Project for Statistical Computing (aa www.r-project.org)

Trade-Offs
Learning programming is learning a new language. It’s your computer’s lan-
guage of bits and logic. When you work with Excel or Tableau for example,
you essentially work with a translator. The buttons and menus are in your
language, and when you click items, the software translates your interaction

�

Tip

When you
search for some-
thing about R
on the web via
search engines,
the basic name
can sometimes
throw off your
results. Instead,
try searching for
r-project instead
of just R, along
with what you’re
looking for. You’ll
usually find more
relevant search
results.

P rogr a mming 75

and then sends the translation to your computer. The computer then does
something for you, such as makes a graph or processes some data.

So time is definitely a major hurdle. It takes time for you to learn a new
language. For a lot of people, this hurdle is too high which I can relate to.
You need to get work done now because you have a load of data sitting in
front of you, and people waiting on results. If that’s the case, in which you
have only this single data-related task with nothing in the future, it might
be better to go with the out-of-the-box visualization tools.

However, if you want to tackle your data and will most likely have (or want)
lots of data-related projects in the future, the time spent learning how
to program now could end up as saved time on other projects, with more
impressive results. You’ll get better at programming on each project you
go through, and it’ll start to come much easier. Just like any foreign lan-
guage, you don’t start writing books in that language; you start with the
essentials and then branch out.

Here’s another way to look at it. Hypothetically speaking, say you’re tossed
into a foreign country, and you don’t speak the language. Instead, you have
a translator. (Stay with me on this one. I have a point.) To talk to a local, you
speak, and then your translator forwards the message. What if the transla-
tor doesn’t know the meaning or the right word for something you just said?
He could leave the word out, or if he’s resourceful, he can look it up in a
translation dictionary.

For out-of-the-box visualization tools, the software is the translator. If it
doesn’t know how to do something, you’re stuck or have to try an alter-
native method. Unlike the speaking translator, software usually doesn’t
instantly learn new words, or in this case, graph types or data handling
features. New functions come in the form of software updates, which you
have to wait for. So what if you learn the language yourself?

Again, I’m not saying to avoid out-of-the-box tools. I use them all the time.
They make a lot of tedious tasks quick and easy, which is great. Just don’t
let the software restrict you.

As you see in later chapters, programming can help you get a lot done with
much less effort than if you were to do it all by hand. That said, there are
also things better done by hand, especially when you’re telling stories with
data. That brings you to the next section on illustration: the opposite end of
the visualization spectrum.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata76

Illustration
Now you’re in graphic designers’ comfort zone. If you’re an analyst or in a
more technical field, this is probably unfamiliar territory. You can do a lot
with a combination of code and out-of-the-box visualization tools, but the
resulting data graphics almost always have that look of something that
was automatically generated. Maybe labels are out of place or a legend
feels cluttered. For analyses, this is usually fine—you know what you’re
looking at.

However, when you make graphics for a presentation, a report, or a publi-
cation, more polished data graphics are usually appropriate so that people
can clearly see the story you’re telling.

For example, Figure 3-19 is the raw output from R. It shows views and
comments on FlowingData for 100 popular posts. Posts are separated by
category such as Mapping. The brighter the green, the more comments on
that post, and the larger the rectangle, the more views. You wouldn’t know
that from the original, but when I was looking at the numbers, I knew what
I was looking at, because I’m the one who wrote the code in R.

Figure 3-22 is a revised version. The labels have been adjusted so that
they’re all readable; lead-in copy has been added on the top so that read-
ers know what they’re looking at; and the red portion of the color legend
was removed because there is no such thing as a post having a negative
number of comments. I also changed the background to white from gray
just because I think it looks better.

I could have edited the code to fit my specific needs, but it was a lot easier
to click-and-drag in Adobe Illustrator. You can either make graphics com-
pletely with illustration software, or you can import graphics that you’ve
made in, for example, R, and edit it to your liking. For the former, your
visualization choices are limited because visualization is not the primary
purpose of the software. For anything more complex than a bar chart,
your best bet is to go with the latter. Otherwise, you will have to do a lot of
things by hand, which is prone to mistakes.

The great thing about using illustration software is that you have more
control over individual elements, and you can do everything by clicking and
dragging. Change the color of bars or a single bar, modify axes width, or
annotate important features with a few mouse clicks.

Ill u str atio n 77

Figure 3-22 ​ Treemap created in R, and edited in Adobe Illustrator

Options
A lot of illustration programs are available but only a few that most people
use—and one that almost everyone uses. Cost will most likely be your
deciding factor. Prices range from free (and open-source) to several hun-
dred dollars.

Adobe Illustrator

Any static data graphic that looks custom-made or is in a major news pub-
lication most likely passed through Adobe Illustrator at some point. Adobe
Illustrator is the industry standard. Every graphic that goes to print at The
New York Times either was created or edited in Illustrator.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata78

Illustrator is so popular for print because you work with vectors instead of
pixels. This means you can make the graphics big without decreasing the
quality of your image. In contrast, if you were to blow up a low-resolution
photograph, which is a set number of pixels, you would end up with a pix-
elated image.

The software was originally designed for font development and later
became popular among designers for illustrations such as logos and more
art-focused graphics. And that’s still what Illustrator is primarily used for.

However, Illustrator does offer some basic graphing functionality via its
Graph tool. You can make the more basic graph types such as bar graphs, pie
charts, and time series plots. You can paste your data into a small spread-
sheet, but that’s about the extent of the data management capabilities.

The best part about using Illustrator, in terms of data graphics, is the flex-
ibility that it provides and its ease of use, with a lot of buttons and func-
tions. It can be kind of confusing at first because there are so many, but
it’s easy to pick up, as you’ll see in Chapter 4, “Visualizing Patterns over
Time.” It’s this flexibility that enables the best data designers to create the
most clear and concise graphics.

Illustrator is available for Windows and Mac. The downside though is that
it’s expensive when you compare it to doing everything with code, which is
free, assuming you already have the machine to install things on. However,
compared to some of the out-of-the-box solutions, Illustrator might not
seem so pricey.

As of this writing, the most recent version of Illustrator is priced at $599
on the Adobe site, but you should find substantial discounts elsewhere (or
go for an older version). Adobe also provides large discounts to students
and those in academia, so be sure to check those out. (It’s the most expen-
sive software I’ve ever purchased, but I use it almost every day.)

Useful Adobe Illustrator Resources

Adobe Illustrator Product Page (aa www.adobe.com/products/

illustrator/)
VectorTuts (aa http://vectortuts.com)—Thorough and straightforward
tutorials on how to use Illustrator

Ill u str atio n 79

Inkscape

Inkscape is the free and open-source alternative to Adobe Illustrator. So
if you want to avoid the hefty price tag, Inkscape is your best bet. I always
use Illustrator because when I started to learn the finer points of data
graphics on the job, Illustrator was what everyone used, so it just made
sense. I have heard good things about Inkscape though, and because it’s
free, there’s no harm in trying it. Just don’t expect as many resources on
how to use the software.

Useful Inkscape Resources

Inkscape (aa http://inkscape.org)
Inkscape Tutorials (aa http://inkscapetutorials.wordpress.com/)

Others

Illustrator and Inkscape are certainly not your only options to create and
polish your data graphics. They just happen to be the programs that most
people use. You might be comfortable with something else. Some people
are fond of Corel Draw, which is Windows-only software and approxi-
mately the same price as Illustrator. It might be slightly cheaper, depend-
ing on where you look.

There are also programs such as Raven by Aviary and Lineform, that offer
a smaller toolset. Remember that Illustrator and Inkscape are general
tools for graphic designers, so they provide a lot of functionality. But if you
just want to make a few edits to existing graphics, you might opt for the
simpler (lower-priced) software.

Trade-Offs
Illustration software is for just that—illustration. It’s not made specifically
for data graphics. It’s meant for graphic design, so many people do not use
a lot of functions offered by Illustrator or Inkscape. The software is also
not good for handling a lot of data, compared to when you program or use
visualization-specific tools. Because of that, you can’t explore your data in
these programs.

�

Tip

Parts of this
book use Adobe
Illustrator to
refine your data
graphics; however,
it shouldn’t be too
hard to figure out
how to do the same
thing in Inkscape.
Many of the tools
and functions are
similarly named.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata80

That said, these programs are a must if you want to make publication-
level data graphics. They don’t just help with aesthetics, but also read-
ability and clarity that’s often hard to achieve with automatically generated
output.

Mapping
Some overlap exists between the covered visualization tools and the ones
that you use to map geographic data. However, the amount of geographic
data has increased significantly in the past years as has the number of
ways you can map. With mobile location services on the rise, there will
be more data with latitude and longitude coordinates attached to it. Maps
are also an incredibly intuitive way to visualize data, and this deserves a
closer look.

Mapping in the early days of the web wasn’t easy; it wasn’t elegant either.
Remember the days you would go to MapQuest, look up directions, and get
this small static map? Yahoo had the same thing for a while.

It wasn’t until a couple of years later until Google provided a slippy map
implementation (Figure 3-23). The technology was around for a while,
but it wasn’t useful until most people’s Internet speed was fast enough
to handle the continuous updating. Slippy maps are what we’re used to
nowadays. We can pan and zoom maps with ease, and in some cases,
maps aren’t just for directions; they’re the main interface to browse a
dataset.

Slippy maps are the map implementation that is now practically
universal. Large maps, that would normally not fit on your screen,
are split into smaller images, or tiles. Only the tiles that fit in your
window display, and the rest are hidden from view. As you drag
the map, other tiles display, making it seem as if you’re moving
around a single large map. You might have also seen this done
with high-resolution photographs.

note

M a ppi ng 81

Figure 3-23 ​ Google Maps to look up directions

Options
Along with all the geographic data making its way into the public domain,
a variety of tools to map that data have also sprung up. Some require only
a tiny bit of programming to get something up and running whereas oth-
ers need a little more work. There are also a few other solutions that don’t
require programming.

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata82

Google, Yahoo, and Microsoft Maps

This is your easiest online solution; although, it does require a little bit of
programming. The better you can code, the more you can do with the map-
ping APIs offered by Google, Yahoo, and Microsoft.

The base functionality of the three is fairly similar, but if you’re just start-
ing out, I recommend you go with Google. It seems to be the most reliable.
They have a Maps API in both JavaScript and Flash, along with other geo-
related services such as geocoding and directions. Go through the Getting
Started tutorial and then branch out to other items such as placing mark-
ers (Figure 3-24), drawing paths, and adding overlays. The comprehensive
set of code snippets and tutorials should quickly get you up and running .

Figure 3-24 ​ Marker placement on Google Maps

Yahoo also has JavaScript and Flash APIs for mapping, plus some geoser-
vices, but I’m not sure how long it’ll be around given the current state of
the company. As of this writing, Yahoo has shifted focus from applications
and development to content provider. Microsoft also provides a JavaScript
API (under the Bing name) and one in Silverlight, which was its answer to
Flash.

M a ppi ng 83

Useful Mapping API Resources

Google Maps API Family (aa http://code.google.com/apis/maps/)
Yahoo! Maps Web Services (aa http://code.google.com/apis/maps/

index.html)
Bing Maps API (aa http://www.microsoft.com/maps/developers/

web.aspx)

ArcGIS

The previously mentioned online mapping services are fairly basic in what
they can do at the core. If you want more advanced mapping, you’ll most
likely need to implement the functionality yourself. ArcGIS, built for desk-
top mapping, is the opposite. It’s a massive program that enables you to
map lots of data and do lots of stuff with it, such as smoothing and pro-
cessing. You can do all this through a user interface, so there’s no code
required.

Any graphics department with mapping specialists most likely uses
ArcGIS. Professional cartographers use ArcGIS. Some people love it. So
if you’re interested in producing detailed maps, it’s worth checking out
ArcGIS.

I have used ArcGIS only for a few projects because I tend to take the pro-
gramming route when I can, and I just didn’t need all that functionality.
The downside of such a rich feature set is that there are so many buttons
and menus to go through. Online and server solutions are also available,
but they feel kind of clunky compared to other implementations.

Useful ArcGIS Resource

ArcGIS Product Page (aa www.esri.com/software/arcgis/)

Modest Maps

I mentioned Modest Maps earlier, with an example in Figure 3-13. It shows
the growth of Walmart. Modest Maps is a Flash and ActionScript library

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata84

for tile-based maps, and there is support for Python. It’s maintained by a
group of people who know their online mapping and do great work for both
clients and for fun, which should tell you a little something about the qual-
ity of the library.

The fun thing about Modest Maps is that it’s more of a framework than a
mapping API like the one offered by Google. It provides the bare minimum
of what it takes to create an online map and then gets out of the way to let
you implement what you want. You can use tiles from different providers,
and you can customize the maps to fit with your application. For example,
Figure 3-13 has a black-and-blue theme, but you can just as easily change
that to white and red, as shown in Figure 3-25.

Figure 3-25 ​ White-and-red themed map using Modest Maps

It’s BSD-licensed, so you can do just about anything you want with it at no
cost. You do have to know the ropes around Flash and ActionScript, but the
basics are covered in Chapter 8, “Visualizing Spatial Relationships.”

Polymaps

Polymaps is kind of like the JavaScript version of Modest Maps. It was
developed and is maintained by some of the same people and provides the

M a ppi ng 85

same functionality—and then some. Modest Maps provides only the basics
of mapping, but Polymaps has some built-in features such as choropleths
(Figure 3-26) and bubbles.

Figure 3-26 ​ Choropleth map showing unemployment, implemented in Polymaps

Because it’s JavaScript, it does feel more lightweight (because it requires
less code), and it works in modern browsers. Polymaps uses Scalable
Vector Graphics (SVG) to display data, so it doesn’t work in the old versions
of Internet Explorer, but most people are up-to-date. As a reference, only
about 5 percent of FlowingData visitors use a browser that’s too old, and I
suspect that percentage will approach zero soon.

My favorite plus of a mapping library in JavaScript is that all the code runs
native in the browser. You don’t have to do any compiling or Flash exports,
which makes it easier to get things running and to make updates later.

Useful Polymaps Resource

Polymaps (aa http://polymaps.org/)

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata86

R

R doesn’t provide mapping functionality in the base distribution, but there
are a few packages that let you do so. Figure 3-27 is a map that I made in
R. The annotation was added after the fact in Adobe Illustrator.

Maps in R are limited in what they can do, and the documentation isn’t
great. So I use R for mapping if I have something simple and I happen to be
using R. Otherwise, I tend to use the tools already mentioned.

Figure 3-27 ​U nited States map created in R

M a ppi ng 87

Useful R Mapping Resources

Analysis of Spatial Data (aa http://cran.r-project.org/web/views/

Spatial.html)—Comprehensive list of packages in R for spatial
analysis
A Practical Guide to Geostatistical Mapping (aa http://spatial-analyst

.net/book/download)—Free book download on how to use R and
other tools for spatial data

Online-Based Solutions

A few online mapping solutions make it easy to visualize your geographic
data. For the most part, they’ve taken the map types that people use the
most and then stripped away the other stuff—kind of like a simplified
ArcGIS. Many Eyes and GeoCommons are two free ones. The former, dis-
cussed previously, has only basic functionality for data by country or by
state in the United States. GeoCommons, however,
has more features and richer interaction. It also
handles common geospatial file formats such as
shapefiles and KML.

A number of paid solutions exist, but Indiemapper
and SpatialKey are the most helpful. SpatialKey
is geared more toward business and decision
making whereas Indiemapper is geared toward
cartographers and designers. Figure 3-28 shows
an example I whipped up in just a few minutes in
Indiemapper.

Trade-Offs
Mapping software comes in all shapes and sizes suited to fit lots of differ-
ent needs. It’d be great if you could learn one program and be able design
every kind of map imaginable. Unfortunately, it doesn’t work that way.

For example, ArcGIS has a lot of functions, but it might not be worth the
time to learn or the money to purchase if you only want to create simple
maps. On the other hand, R, which has basic mapping functionality and is
free, could be too simple for what you want. If online and interactive maps

Figure 3-28 ​ Choropleth map created in Indiemapper

c h a P t e r 3: C h o o s i n g T o o l s t o V i s ua l i z e D ata88

are your goal, you can go open-source with Modest Maps or Polymaps, but
that requires more programming skills. You’ll learn more about how to
use what’s available in Chapter 8.

Survey Your Options
This isn’t a comprehensive list of what you can use to visualize data, but
it should be enough to get you started. There’s a lot to consider and play
with here. The tools you end up using largely depend on what you want to
accomplish, and there are always multiple ways to accomplish a single
task, even within the same software. Want to design static data graphics?
Maybe try R or Illustrator. Do you want to build an interactive tool for a
web application? Try JavaScript or Flash.

On FlowingData, I ran a poll that asked people what they mainly used to
analyze and visualize data. A little more than 1,000 people responded. The
results are shown in Figure 3-29.

Figure 3-29 ​ What FlowingData readers use to analyze and visualize data

W r a ppi ng Up 89

There are some obvious leaders, given the topic of FlowingData. Excel
was first, and R followed in second. But after that, there was a variety of
software picks. More than 200 people chose the Other category. In the
comments, many people stated that they use a combination of tools to fill
different needs, which is usually the best route for the long term.

Combining Them
A lot of people like to stick to one program—it’s comfortable and easy.
They don’t have to learn anything new. If that works, then by all means
they should keep at it. But there comes a point after you’ve worked with
data long enough when you hit the software’s threshold. You know what
you want to do with your data or how to visualize it, but the software
doesn’t let you do it or makes the process harder than it has to be.

You can either accept that, or you can use different software, which could
take time to learn but helps you design what you envision—I say go with
the latter. Learning a variety of tools ensures that you won’t get stuck on a
dataset, and you can be versatile enough to accomplish a variety of visual-
ization tasks to get actual results.

Wrapping Up
Remember that none of these tools are a cure-all. In the end, the analyses
and data design is still up to you. The tools are just that—they’re tools.
Just because you have a hammer doesn’t mean you can build a house.
Likewise, you can have great software and a super computer, but if you
don’t know how to use your tools, they might as well not exist. You decide
what questions to ask, what data to use, and what facets to highlight, and
this all becomes easier with practice.

But hey, you’re in luck. That’s what the rest of this book is for. The follow-
ing chapters cover important data design concepts and teach you how to
put the abstract into practice, using a combination of the tools that were
just covered. You can learn what to look for in your data and how to visual-
ize it.

Visualizing
Patterns over Time

Time series data is just about everywhere. Public opinion changes,
populations shift, and businesses grow. You look to time series data to
see how much these things have changed. This chapter looks at dis-
crete and continuous data because the type of data graphics you use
depends on the type of data you have. You also get your hands dirty
with R and Adobe Illustrator—the two programs go great together.

4

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e92

What to Look for over Time
You look at time every day. It’s on your computer, your watch, your phone,
and just about anywhere else you look. Even without a clock, you feel time
as you wake up and go to sleep and the sun rises and sets. So it’s only
natural to have data over time. It lets you see how things change.

The most common thing you look for in time series, or temporal, data is
trends. Is something increasing or decreasing? Are there seasonal cycles?
To find these patterns, you have to look beyond individual data points to get
the whole picture. It’s easy to pick out a single value from a point in time
and call it a day, but when you look at what came before and after, you gain
a better understanding of what that single value means, and the more you
know about your data, the better the story that you can tell.

For example, there was a chart the Obama administration released a year
into the new presidency, reproduced in Figure 4-1. It showed job loss during
the tail end of the Bush administration through the first part of Obama’s.

Figure 4-1 ​ Change in job loss since Barack Obama took office

It looks like the new administration had a significant positive effect on job
loss, but what if you zoom out and look at a larger time frame, as shown in
Figure 4-2? Does it make a difference?

Discrete P oin ts in T ime 93

Figure 4-2 ​ Change in job loss from 2001 through 2010

Although you always want to get the big picture, it’s also useful to look
at your data in more detail. Are there outliers? Are there any periods of
time that look out of place? Are there spikes or dips? If so, what happened
during that time? Often, these irregularities are where you want to focus.
Other times the outliers can end up being a mistake in data entry. Looking
at the big picture—the context—can help you determine what is what.

Discrete Points in Time
Temporal data can be categorized as discrete or continuous. Knowing which
category your data belongs to can help you decide how to visualize it. In the
discrete case, values are from specific points or blocks of time, and there is
a finite number of possible values. For example, the percentage of people
who pass a test each year is discrete. People take the test, and that’s it.
Their scores don’t change afterward, and the test is taken on a specific date.
Something like temperature, however, is continuous. It can be measured at
any time of day during any interval, and it is constantly changing.

In this section you look at chart types that help you visualize discrete tem-
poral data, and you see concrete examples on how to create these charts
in R and Illustrator. The beginning will be the main introduction, and then
you can apply the same design patterns throughout the chapter. This part

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e94

is important. Although the examples are for specific charts, you can apply
the same principles to all sorts of visualization. Remember it’s all about
the big picture.

Bars
The bar graph is one of the most common chart types. Most likely you’ve
seen lots of them. You’ve probably made some. The bar graph can be used
for various data types, but now take a look at how it can be used for tem-
poral data.

Figure 4-3 shows a basic framework. The time axis (the horizontal one,
that is, x-axis) provides a place for points in time that are ordered chrono-
logically. In this case the points in time are months, from January to June
2011, but it could just as easily be by year, by day, or by some other time
unit. Bar width and bar spacing typically do not represent values.

Figure 4-3 ​ Framework of bar graphs

Discrete P oin ts in T ime 95

The value axis (the vertical one, that is, y-axis) indicates the scale of the
graph. Figure 4-3 shows a linear scale where units are evenly spaced across
the full axis. Bar height matches up with the value axis. The first bar, for
example, goes up to one unit, whereas the highest bar goes up to four units.

This is important. The visual cue for value is bar height. The lower the
value is, the shorter the bar will be. The greater a value is, the taller a bar
will be. So you can see that the height of the four-unit bar in April is twice
as tall as the two-unit bar in February.

Many programs, by default, set the lowest value of the value axis to the
minimum of the dataset, as shown in Figure 4-4. In this case, the mini-
mum is 1. However, if you were to start the value axis at 1, the height of the
February bar wouldn’t be half the height of the April
bar anymore. It would look like February was one-
third that of April. The bar for January would also
be nonexistent. The point: Always start the value
axis at zero. Otherwise, your bar graph could dis-
play incorrect relationships.

Create a Bar Graph

It’s time to make your first graph, using real
data, and it’s an important part of history that is
an absolute must for all people who call them-
selves a human. It’s the results from the past
three decades of Nathan’s Hot Dog Eating Contest. Oh, yes.

Figure 4-5 is the final graph you’re after. Do this in two steps. First, create
a basic bar graph in R, and then you can refine that graph in Illustrator.

In case you’re not in the know of the competitive eating circuit, Nathan’s
Hot Dog Eating Contest is an annual event that happens every July 4.
That’s Independence Day in the United States. The event has become so
popular that it’s even televised on ESPN.

Throughout the late 1990s, the winners ate 10 to 20 hot dogs and buns
(HDBs) in about 15 minutes. However, in 2001, Takeru Kobayashi, a profes-
sional eater from Japan, obliterated the competition by eating 50 HDBs.
That was more than twice the amount anyone in the world had eaten
before him. And this is where the story begins.

Figure 4-4 ​ Bar graph with non-zero axis

�Always start the
value axis of your
bar graph at zero
when you’re
dealing with all
positive values.
Anything else
makes it harder
to visually com-
pare the height
of the bars.

Tip

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e96

Figure 4-5 ​ Bar graph showing results from Nathan’s Hot Dog Eating Contest

Wikipedia has results from the contest dating back to 1916, but the hot dog
eating didn’t become a regular event until 1980, so we start here. The data is
in an HTML table and includes the year, name, number of HDBs eaten, and
country where the winner is from. I’ve compiled the data in a CSV file that you
can download at http://datasets.flowingdata.com/hot-dog-contest-winners
.csv. Here’s what the first five rows of data look like:

“Year”,”Winner”,”Dogs eaten”,”Country”,”New record”

1980,”Paul Siederman & Joe Baldini”,9.1,”United States”,0

1981,”Thomas DeBerry “,11,”United States”,0

1982,”Steven Abrams “,11,”United States”,0

1983,”Luis Llamas “,19.5,”Mexico”,1

1984,”Birgit Felden “,9.5,”Germany”,0

To load the data in R, use the read.csv() command. You can either load the
file locally from you own computer, or you can use a URL. Enter this line of
code in R to do the latter:

hotdogs <-

 read.csv(“http://datasets.flowingdata.com/hot-dog-contest-winners.csv”,

 sep=”,”, header=TRUE)

P Download
the data in CSV
format from
http://datasets

.flowingdata.com/

hot-dog-contest-

winners.csv.
See the page for
“Nathan’s Hot Dog
Eating Contest”
on Wikipedia for
precompiled data
and history of the
contest.

Discrete P oin ts in T ime 97

Set your working directory in R to the same directory as your data file via
the main menu if you want to load the data locally from your own com-
puter, You can also use the setwd() function.

If you’re new to programming, this probably looks cryptic, so now break
it down so you can understand it. This is one line of R code. You load data
with the read.csv() command, and it has three arguments. The first is the
location of your data, which in this case is a URL.

The second argument, sep, specifies what character separates the col-
umns in the data file. It’s a comma-delimited file, so specify the comma. If
it were a tab-delimited file, you would use \t instead of a comma to indi-
cate the separator was a tab.

The last argument, header, tells R that the data file has a header, which
contains the name of each column. The first column is year, the second
is the winner’s name, the third is number of HDBs eaten, and the fourth
is the competitor’s resident country. I’ve also added a new field that you
might have noticed: new record. If the world record was broken on a year,
the value is 1. Otherwise it is 0. You can put this to use soon.

The data is now loaded into R and is available via the hotdogs variable.
Technically, the data is stored as a data frame, which isn’t totally impor-
tant but worth noting. Here’s what the beginning of the data frame looks
like if you type hotdogs.

 Year Winner Dogs.eaten Country New.record

1 1980 Paul Siederman & Joe Baldini 9.10 United States 0

2 1981 Thomas DeBerry 11.00 United States 0

3 1982 Steven Abrams 11.00 United States 0

4 1983 Luis Llamas 19.50 Mexico 1

5 1984 Birgit Felden 9.50 Germany 0

The spaces in the column names have been replaced with periods. Dogs
eaten is now Dogs.eaten. It’s the same thing with New record. To access a
specific column of data, you use the name of the data frame followed by
a dollar sign ($) and then the column name. For example, if you want to
access Dogs.eaten you enter the following:

hotdogs$Dogs.eaten

Now that you have the data in R, you can go straight to graphing with the
barplot() command.

barplot(hotdogs$Dogs.eaten)

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e98

This tells R to graph the Dogs.eaten column, and you should get Figure 4-6.

Figure 4-6 ​ Default graph of number of hot dogs and buns eaten, using barplot() in R

Not bad, but you can do better. Use the names.arg argument in barplot() to
specify the names of each bar. In this case, it is the year of each contest.

barplot(hotdogs$Dogs.eaten, names.arg=hotdogs$Year)

This gives you Figure 4-7. There are now labels on the bottom.

Figure 4-7 ​ Bar graph with labels for years

You can apply a number of other arguments. You can add axis labels,
change borders, and change colors, as shown in Figure 4-8.

barplot(hotdogs$Dogs.eaten, names.arg=hotdogs$Year, col=”red”,

 border=NA, xlab=”Year”, ylab=”Hot dogs and buns (HDB) eaten”)

The col argument can be your pick of colors (specified in R documentation)
or a hexadecimal number such as #821122. Here you specified no border

Discrete P oin ts in T ime 99

with NA, which is a logical constant meaning no value. You also labeled the
x- and y-axes as “Year” and “Hot dogs and buns (HDB) eaten,” respectively.

Figure 4-8 ​ Bar graph with colored bars and labeled axes	

You don’t need to limit yourself to just one color. You can provide multiple
colors to barplot() to shade each bar how you want. For example, say you
want to highlight the years the United States won the contest. You can
highlight those years in dark red (#821122) and the rest a light gray, as
shown in Figure 4-9.

Figure 4-9 ​ Bar graph with individually colored bars

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e100

To do this, you need to build a list, or vector in R, of colors. Visit each year
and decide what color to make the corresponding bar. If it’s a win for the
United States, specify red. Otherwise, specify gray. Here’s the code to
do that:

fill_colors <- c()

for (i in 1:length(hotdogs$Country)) {

 if (hotdogs$Country[i] == “United States”) {

 fill_colors <- c(fill_colors, “#821122”)

 } else {

 fill_colors <- c(fill_colors, “#cccccc”)

 }

}

The first line starts an empty vector named fill_colors. You use c() to cre-
ate vectors in R.

The next line starts a for loop. You can tell R to loop through an index
named i from 1 to the number of rows in your hotdogs data frame. More
specifically, you can take a single column, Country, from the hotdogs data
frame, and find the length. If you were to use length() with just hotdogs,
you would get the number of columns, which is 5 in this case, but you want
the number of rows, which is 31. There is one row for each year from 1980
to 2010, so the loop will execute the code inside the brackets 31 times, and
for each loop, the i index will go up one.

So in the first iteration, where i equals 1, check if the country in the first
row (that is, winner for 1980) is the United States. If it is, append the color
#821122, which is a reddish color in hexadecimal form, to fill_colors.
Otherwise, append #cccccc, which is a light gray.

In 1980, the winners were from the United States, so do the former. The
loop checks 30 more times for the rest of the years. Enter fill_colors in
the R console to see what you end up with. It’s a vector of colors just like
you want.

Pass the fill_colors vector in the col argument for barplot() like so.

barplot(hotdogs$Dogs.eaten, names.arg=hotdogs$Year, col=fill_colors,

 border=NA, xlab=”Year”, ylab=”Hot dogs and buns (HDB) eaten”)

The code is the same as before, except you use fill_colors instead of “red”
in the col argument.

�
Most languages use
0-based arrays or
vectors where
the first item is
referenced with
a 0-index. R,
however, uses
1-based vectors.

note

Discrete P oin ts in T ime 101

The final bar graph in Figure 4-5 highlights years when a record was bro-
ken though—not when the United States won. The process and logic are
the same. You just need to change some of the conditions. The New.record
column in your data frame indicates new records, so if it’s 1, you do dark
red, and gray otherwise. Here’s how to do it in R.

fill_colors <- c()

for (i in 1:length(hotdogs$New.record)) {

 if (hotdogs$New.record[i] == 1) {

 fill_colors <- c(fill_colors, “#821122”)

 } else {

 fill_colors <- c(fill_colors, “#cccccc”)

 }

}

barplot(hotdogs$Dogs.eaten, names.arg=hotdogs$Year, col=fill_colors,

 border=NA, xlab=”Year”, ylab=”Hot dogs and buns (HDB) eaten”)

It’s the same as the United States example, just with different if state-
ments. Your result should look like Figure 4-10.

Figure 4-10 ​ Bar graph with bars colored individually, but using different conditions than
Figure 4-9

At this point you can play around with some of the other barplot() options
such as spacing or adding a title.

barplot(hotdogs$Dogs.eaten, names.arg=hotdogs$Year, col=fill_colors,

 border=NA, space=0.3, xlab=”Year”, ylab=”Hot dogs and buns (HDB)

eaten”)

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e102

This gives you Figure 4-11. Notice the spacing is wider than before, and
there is a title on the top.

Figure 4-11 ​ Bar graph with custom spacing and main title

Voilá! You’ve gotten your first taste of R.

In the File menu, there is an option to save your graph. Save it as a PDF.
You’re going to need it soon.

To see the documentation for any function in R, simply type a
question mark followed by the function name. For example, to
read more about barplot() in R, simply type ?barplot. A descrip-
tion of the function is provided along with an explanation of avail-
able arguments. There are also usually working examples, which
can be extremely helpful.

tip

Refine Your Graph in Illustrator

You now have a basic bar graph. It’s not bad to look at, and if you use it only
for analysis, it’s not necessary to do much more with it. But if you want

�

Tip

Be careful when
you choose bar
spacing. When the
width of spacing is
close to that of the
width of the bars,
there’s a vibration
effect visually. It’s
almost as if the
roles of the bar
and spacing have
switched.

Discrete P oin ts in T ime 103

to make your graph into a standalone graphic, you can do some things to
make it more readable.

Now look at this from a storytelling perspective. Pretend Figure 4-11 was
by itself, and you’re a reader who came across it somehow. What can you
glean from the basic graph? You know the graph shows hot dogs and buns
eaten by year. Is this one person’s eating habits? That sure is a lot of hot
dogs for one person. Is it food for animals? Are leftovers given to birds? Is
it the average number of hot dogs eaten per person per year? Why are the
bars colored?

As the one who made the graph, you know the context behind the num-
bers, but your readers don’t, so you have to explain what’s going on. Good
data design can help your readers understand the story more clearly.
Illustrator, which enables you to manipulate individual elements by hand,
can help you do that. You can change fonts, add notes, modify axes, edit
colors, and pretty much do whatever your imagination allows.

This book keeps the editing in Illustrator simple, but as you work
through more examples, and start to design your own graphics,
you’ll see how these small changes can be a big help to make
your graphic clear and concise.

First things first. Open the PDF file of your bar graph in Illus-
trator. You should see the graph you made in one window, and
then there will most likely be several smaller windows with
tools, colors, and fonts, among other things. The main window
to make note of is the Tools window, as shown in Figure 4-12.
You’ll use this often. If you don’t see the Tools window, go to the
Window menu and click Tools to turn it on.

The black arrow is called the Selection tool. Select it, and your
mouse pointer becomes a black arrow (if it wasn’t already).
Click-and-drag over the border. The borders appear high-
lighted, as shown in Figure 4-13. This is known as a clipping
mask in Illustrator. It can be useful in various situations, but
you don’t care about it now, so press Delete on your keyboard to
get rid of it. If this deletes the entire graphic, undo the edit, and
use the Direct Selection tool, which is represented by a white
arrow, to highlight the clipping mask instead.

�

Tip

Put yourself in a
reader’s shoes
when you design
data graphics.
What parts of
the data need
explanation?

�

Tip

�

If you don’t have Illustrator, you can
try InkScape, the
free and open-
source alternative.
Although the
functions or
buttons might not
look exactly the
same as Illustrator,
you can still find
many of the same
things in InkScape.

Figure 4-12 ​
Tools
window in
Illustrator

�If you don’t have
Illustrator, you can
try InkScape, the
free and open-
source alternative.
Although the
functions or
buttons might not
look exactly the
same as Illustrator,
you can still find
many of the same
things in InkScape.

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e104

Figure 4-13 ​ Remove clipping mask from PDF

Now try to change the fonts, which is
easy to do. Again, using the Selection
tool, click the text to highlight what
you want to change. Change the font to
whatever you like through drop-down
menus in the Font window, as shown in
Figure 4-14. You can also change fonts
through the Type menu. In Figure 4-15,
the font is changed to Georgia Regular.

Next, something must be done about
the number labels on the value axis.
The numbers are turned on their side,
but they should be turned right-side up to improve readability. Click those
numbers. Notice that other stuff is highlighted, too. This is because the
numbers are grouped with those elements of the graph. You need to
ungroup them so that you can rotate each of the numbers, which you can
do through the Object menu. Click Ungroup. Deselect the number labels
and then select them again. Now only the numbers highlight. That’s what
you want. You might have to ungroup a few times before this happens.
Alternatively, you can use the Direct Selection tool instead.

Figure 4-14 ​ Font window in
Illustrator

Discrete P oin ts in T ime 105

Figure 4-15 ​ Graph with fonts changed to Georgia Regular

Go back to the Object menu, and select Transform ➪ Transform Each. As
shown in Figure 4-16, change the rotation angle to –90 degrees. Click OK.
The labels are now right-side up.

While you’re at it, shift the labels (not the tick marks) up and to the right
so that they’re above the tick marks, instead of to the left. Shift items
either with the arrow keys on your keyboard or drag with your mouse.
You can also directly specify the units as hot dogs and buns (HDBs)
instead of having them off to the side. Again, this improves readability
as a reader’s eyes move from left to right. You should now have some-
thing like Figure 4-17.

This is starting to look more like the final graph in Figure 4-5. It’s still
missing a few things, though. There aren’t any tick marks on the hori-
zontal axis, nothing is annotated, and it’d be nice if you incorporated
green, one of the colors in Nathan’s Hot Dogs’ logo.

You can also simplify the graphic by removing the vertical line on the value
axis. It doesn’t help communicate the data more clearly. Notice how in the
final graphic there are only tick marks. If you click the vertical line with
the Selection Tool, the labels also highlight. That’s because they’re all part
of a group. To select just the line, use the Direct Selection tool. After you
highlight the line, press Delete and it’ll be gone.

There are a bunch of ways to create tick marks, but here’s one way to do
it. Using the Pen tool, you can easily draw straight lines. Select it from the

Figure 4-16 ​ Transform menu

Figure 4-17 ​ Bar graph with
simplified value axis

�

Tip

Data graphics are
meant to shine a
light on your data.
Try to remove any
elements that
don’t help you
do that.

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e106

Tools window, and then specify the style of your line via the Stroke window.
Make the weight 0.3 pt, and make sure the Dashed Line check box is not
selected.

To draw a line, click where you want to put the first point of the line (or tick
mark in this case); then click where you want to put the second point. If
you press the Shift key during the second click, the line will automatically
be straight. You should now have a single tick mark. You need 30 more
because you need a tick mark for each year.

You can draw them all by hand, but there’s a better way. If you’re on a Mac,
hold down Option, or if you’re on a PC, hold down Alt. Click the single tick
with the Selection tool and drag to where you want the next tick, while still
holding down Option or Alt. This creates a copy, so you should now have
two tick marks. Now press Command+D for Mac or Control+D for PC. This
duplicates the new tick mark spaced the same distance that the second
was from the first. Press Command/Control+D until you have all the tick
marks you need.

Finally, arrange all the marks correctly. Move the last tick mark so that it’s
centered with the last bar. The first tick should already be centered with
the first bar. Now highlight all the ticks, and click Horizontal Distribute
Center in the Align window (Figure 4-18).

This distributes the ticks so that they’re
evenly spaced between the outermost
marks. Optionally, you can highlight every
other tick with the Selection Tool and
resize it vertically to make them smaller.
This makes it obvious that the longer ticks
are for the year labels.

To change the fill color from red to green,
you could go back to the Direct Selection tool and select every red box.
Because there aren’t that many, it would be quick, but what if you have a
lot of elements to click? Instead, click a single red bar; then go to Select
➪ Same ➪ Fill Color. This does what you’d expect. It selects all the bars
that have a red fill. Now simply change the color to your liking via the Color
window. You can change both border and fill color here, but just change fill
for now, as shown in Figure 4-19.

Figure 4-18 ​ Align window in
Illustrator

Discrete P oin ts in T ime 107

Figure 4-19 ​ Changing color of graph elements

Using the Type tool, found in the Tools window, you can add text boxes to
the graphic. This is your chance to explain what readers are looking at
in your graphic and to clarify any spots that might seem unclear. Choose
fonts that you think will work, using size and style to differentiate the label
from graph elements like axis labels.

In the case of this ever important hot dog graphic, highlight the first record
since 1980, Takeru Kobayashi’s dominance, and Joey Chestnut’s cur-
rent reign. Also include a title and a lead-in that explains the gist of the
graphic.

Last but not least: Remember to include the data source. There’s no way
to tell if your graphic is accurate otherwise.

Put all this together, and you have the final graphic, as shown in
Figure 4-5.

I know this was a lot to take in, but it gets much easier as you work on
more graphics. You’ll see how coding in R, or any language for that mat-
ter, follows a certain pattern, and although Illustrator has a huge toolset,
you’ll just learn the ones that pertain to the task at hand.

The following examples look at other charting types for temporal data and
spend more time with R and Illustrator. They’ll go by quicker now that you
covered some of the basics of the two tools.

�

Tip

Always include
your data source
in your graphics. It
not only provides
credibility but also
context.

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e108

Stack the Bars
As shown in Figure 4-20, the geometry of stacked bar charts is similar to
regular bar charts. The difference of course is that rectangles are stacked
on top of each other. You use stacked bar charts when there are subcat-
egories, and the sum of these subcategories is meaningful.

Like bar charts, stacked bar charts are not just for temporal data; they
can be used for more categorical data. But in Figure 4-19, for example, the
categories are months.

Figure 4-20 ​ Framework for stacked bar charts

Create a Stacked Bar Chart

Because the stacked bar chart is a relatively common chart type, there are
plenty of ways to make one (like its unstacked sibling), but here’s how to do
it in R. Follow a similar process to what you did to make a regular bar chart.

1.	 Load the data.

2.	M ake sure the data is properly formatted.

3.	 Use an R function to produce a plot.

This is generally what you’ll do every time you use R to make data graph-
ics. Sometimes you’ll spend more time on one part than the other. It might

Discrete P oin ts in T ime 109

take longer to get your data in the right format, or you might write your
own functions in R to get exactly what you want. Whatever the case may
be, you’ll almost always follow the preceding three steps, and this will
carry over to other languages, as you’ll see in later chapters.

Back to your stacked bar chart. Go back to Nathan’s Hot Dog Contest. This
is the last time you look at hot dog eating data in this book, so savor the
moment. Figure 4-21 is the graphic you want to make.

Figure 4-21 ​ Stacked bar charts showing top three eaters from 2000 to 2010

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e110

Instead of looking at only the number of HDBs eaten by the winners, look
at the top three for each year. Each stack represents a year, each with
three bars, and one for each top-three eater. Wikipedia has this data con-
sistently starting only in 2000, so start there.

First things first. Load the data in R. You can load it directly from the URL
with the following.

hot_dog_places <-

 read.csv(‘http://datasets.flowingdata.com/hot-dog-places.csv’,

 sep=”,”, header=TRUE)

Type hot_dog_places to view the data. Each column shows the results for a
year, and each row is for places 1 through 3.

 X2000 X2001 X2002 X2003 X2004 X2005 X2006 X2007 X2008 X2009 X2010

1 25 50.0 50.5 44.5 53.5 49 54 66 59 68.0 54

2 24 31.0 26.0 30.5 38.0 37 52 63 59 64.5 43

3 22 23.5 25.5 29.5 32.0 32 37 49 42 55.0 37

See how an “X” precedes all the column names, which were added by
default when you loaded the data because the header names are num-
bers? R doesn’t like that, so it adds a letter to make it word-like, or more
technically speaking, a string. You need to use the header names for labels
in the stacked bar chart, so change those back.

names(hot_dog_places) <- c(“2000”, “2001”, “2002”, “2003”, “2004”,

 “2005”, “2006”, “2007”, “2008”, “2009”, “2010”)

Use quotes around each year to specify that it is a string. Type hot_dog_
places again, and the headers are just the years now.

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

1 25 50.0 50.5 44.5 53.5 49 54 66 59 68.0 54

2 24 31.0 26.0 30.5 38.0 37 52 63 59 64.5 43

3 22 23.5 25.5 29.5 32.0 32 37 49 42 55.0 37

Like before, use the barplot() function, but use data that’s in a different
format. To pass all the preceding values to barplot(), you need to convert
hot_dog_places to a matrix. Right now it’s a data frame. These are different
structures in R, but the differences between the two are not so important
right now. What you need to know is how to convert a data frame to a matrix.

hot_dog_matrix <- as.matrix(hot_dog_places)

Discrete P oin ts in T ime 111

You stored our newly created matrix as hot_dog_matrix. You can pass this
into barplot().

barplot(hot_dog_matrix, border=NA, space=0.25, ylim=c(0, 200),

 xlab=”Year”, ylab=”Hot dogs and buns (HDBs) eaten”,

 main=”Hot Dog Eating Contest Results, 1980-2010”)

You specified no borders around the bar, spacing to be 0.25 the width of
bar width, and the limits of the value axis to go from 0 to 200, along with
title and axis labels. Figure 4-22 is the result.

Figure 4-22 ​ Stacked bar chart using R

Not bad for a few lines of code, but you’re not quite
done. Now you can refine. Save the image as a PDF
and open it in Illustrator. Use the same tools that
you did before. You can add text with the Type tool,
change fonts, simplify the vertical axis, edit colors
with the ability to select elements with the same fill,
and of course include the data source (Figure 4-23).

Add some lead-in text and change the title to what
you want, and Figure 4-21 shows the final result.

The next chapter covers the stacked bar chart’s
continuous cousin: the stacked area chart. The
geometry is similar; just imagine if you connected
all the stacks for a continuous flow. Figure 4-23 ​ Edits in Illustrator

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e112

Points
Sometimes it makes more sense to use points instead of bars. They use
less space and because there are no bins, points can provide a better
feeling of flow from one point to the next. Figure 4-24 shows the common
geometry when using points to graph temporal data.

Figure 4-24 ​ Framework for using points to chart

This type of chart is commonly known as a scatterplot and you can also
use it to visualize nontemporal data. It’s often used to show the relation-
ship between two variables, which is covered in Chapter 6, “Visualizing
Relationships.” For temporal data, time is represented on the horizontal
axis, and values or measurements are represented on the vertical axis.

Unlike the bar graph, which uses length as the visual cue, scatterplots
use position. You can think of each point with an X- and Y-coordinate, and
you can compare to other points in time based on where they are placed.

Discrete P oin ts in T ime 113

Because of this, the value axis of scatterplots doesn’t always have to start
at zero, but it’s usually good practice.

Create a ScatterPlot

R makes it easy to create a scatterplot via the plot() function, but you can
use variations, depending on what data you look at. Figure 4-25 shows the
final graphic.

Figure 4-25 ​ Scatterplot created in R and designed in Illustrator

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e114

This is the story of FlowingData subscriber counts in January 2010, as
reported by Feedburner, the service that keeps track of how many people
read FlowingData on a daily basis. On January 1, 2010, there were 25,047
subscribers, and by the end of the month, there were 27,611 subscribers.
Probably the most interesting part though was what wasn’t reported in the
middle of the month. Did I actually say something to offend 17,000 readers
that made them unsubscribe? Not likely.

Do you remember the first thing to do when you make a graph in R? You
load your data. Use read.csv() to load the data directly from a URL.

subscribers <-

 read.csv(“http://datasets.flowingdata.com/flowingdata_subscribers.csv”,

 sep=”,”, header=TRUE)

To look at the first five rows of the data, enter the following:

subscribers[1:5,]

And here’s what it looks like:

 Date Subscribers Reach Item.Views Hits

1 01-01-2010 25047 4627 9682 27225

2 01-02-2010 25204 1676 5434 28042

3 01-03-2010 25491 1485 6318 29824

4 01-04-2010 26503 6290 17238 48911

5 01-04-2010 26654 6544 16224 45521

There are five columns on date, subscribers, reach, item views, and hits.
You care only about subscribers.

You can also incorporate the date, but counts are already in chronological
order, so you actually don’t need the first column to plot subscribers. To
plot the points, enter the following, and you’ll get the result in Figure 4-26.

plot(subscribers$Subscribers)

Easy, right? The plot() function actually enables you to make several dif-
ferent types of graphs, but the point type is the default. You used only the
subscriber counts. When you provide only one data array to the plot()
function, it assumes that the array contains values, and it automatically
generates an index for the x-coordinates.

�

Tip

Just because it’s
data doesn’t make
it fact. There can
be typos, errors
in reporting, or
something else
that causes a
misrepresentation
of reality.

Discrete P oin ts in T ime 115

Now explicitly specify that you want the point type, and set the range of the
vertical axis from 0 to 30,000.

plot(subscribers$Subscribers, type=”p”, ylim=c(0, 30000))

Figure 4-27 is same thing as Figure 4-26, but with a wider vertical axis as
you specified with the ylim argument. Notice you use the type argument to
tell R to use points. If you changed type to h, R would make high-density
vertical lines.

Figure 4-26 ​ Default plot in R

Figure 4-27 ​ Point plot in R with y-limits specified

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e116

You could also combine the two, as shown in Figure 4-28. However, you’d
also need to use the points() method. Whenever you use the plot() function,
you create a new graphic, instead of adding new elements to an existing
graph. Following is how you would combine vertical lines and points if you
were so inclined.

plot(subscribers$Subscribers, type=”h”, ylim=c(0, 30000),

 xlab=”Day”, ylab=”Subscribers”)

points(subscribers$Subscribers, pch=19, col=”black”)

The plot with vertical lines is drawn first, this time with axis labels. Points
are then added to the existing plot. The pch argument is for size, and the
col argument, which you used with the bar chart, specifies fill color.

Figure 4-28 ​ Plot with high-density vertical lines

Let’s go back to Figure 4-27. Save it as a PDF and then open it in Illustrator
so that we can do some designing.

Using the Selection tool, highlight labels, and change the font to your lik-
ing. Then ungroup the labels so that you can edit the vertical axis labels
individually. Use Transform ➪ Transform Each to turn the labels right-side
up. Then use the Direct Selection tool to remove the vertical bar from the
axis. You don’t need that—it’s just taking up space.

Finally, highlight the actual points, which are plain white circles, and
use the options in the Color window to take your pick of fill and stroke

Discrete P oin ts in T ime 117

color. You might need to change the color scheme to CMYK (that’s Cyan,
Magenta, Yellow, and key) from Grayscale to get more color choices via the
options menu of the Color window (Figure 4-29).

This should bring you to Figure 4-30. It already looks more like the fin-
ished graphic.

Figure 4-30 ​ Point plot after editing vertical axis and color

Now try adding a grid so that it’s easier to see what values the
points on the far right represent and how they relate to previ-
ous points. Highlight the ticks on the value axis with the Selection
tool, and then click-and-drag across to extend the ticks all the
way across the graph. As-is, they’re kind of blunt, so change the
style for those. Like before, you can change the style of lines with
the options available in the Stroke window. Use the options in Fig-
ure 4-31 if you want thin, dotted lines.

Figure 4-32 is what you have after those changes.

From here, use the same tools and techniques to get Figure 4-32
to your final graphic. Make tick marks on the horizontal axis with
the Pen tool, and edit and add labels with the Type tool. Don’t for-
get to add the source of your data on the bottom to complete the
story.

Figure 4-29 ​ Options
menu for Color window

Figure 4-31 ​ Options for dotted
lines in Stroke window

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e118

Figure 4-32 ​ Added grid lines and filled in values for the value axis

Continuous Data
Visualizing continuous time series data is similar to visualizing discrete
data. You do, after all, still have a discrete number of data points, even if
the dataset is continuous. The structure of continuous and discrete is the
same. The difference between the two is what they represent in the physi-
cal world. As previously covered, continuous data represents constantly
changing phenomena, so to this end, you want to visualize the data in a
way that shows that.

Connect the Dots
You’re probably familiar with this one. The time series chart is similar to
drawing points, except you also connect the points with lines. Often, you
don’t show the points. Figure 4-33 shows the geometry of the popular
chart type.

You have the nodes, or points, that take on X- and Y-coordinates, and then
the edges, or connecting lines that help you see trends in your data. It’s
usually a good idea to start the value axis at zero because starting any-
where else could affect the scale.

How far you stretch the horizontal axis can also affect the appearance of
trends. Squish too much, and an increase from point to point might look
more than it is. Stretch too far out, and you might not see patterns.

C on ti nuous D ata 119

Figure 4-33 ​ Time series chart framework

Create a Time Series Chart

If you know how to make a scatterplot in R, you know how to make a
time series chart. Load your data and use the plot() function, but
instead of using p in the type argument, you use l as the type, which
stands for line.

To demonstrate, use world population data from the World Bank from
1960 to 2009. As usual load the data with the read.csv() function.

population <-

 read.csv(“http://datasets.flowingdata.com/world-population.csv”,

 sep=”,”, header=TRUE)

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e120

Here’s what the first few rows of the data look like. It’s just the year and
population.

 Year Population

1 1960 3028654024

2 1961 3068356747

3 1962 3121963107

4 1963 3187471383

5 1964 3253112403

Use the plot() function and specify the X- and Y-coordinates, the type, the
value axis limits, and axis labels.

plot(population$Year, population$Population, type=”l”,

 ylim=c(0, 7000000000), xlab=”Year”, ylab=”Population”)

Your chart will look like Figure 4-34.

Figure 4-34 ​ Default time series chart in R

At this point, you can save the image as a PDF and edit it in Illustrator like
you’ve done a couple of times, but now try something else. Design the entire
chart in Illustrator with the Line Graph tool. This is one of several graphing
tools in Illustrator that enables you to create basic charts (Figure 4-35).

Figure 4-35 ​ Graph tools in Illustrator

C on ti nuous D ata 121

To start, select the Line Graph tool from the Tool window. You should see
an icon of some kind of chart. Press and hold down the icon to choose the
chart type.

Then download the population data at http://datasets.flowingdata.com/
world-population.csv. You can’t load data directly from a URL like you can
in R, so you have to save the file on your computer. Open the CSV file in
Excel or Google Documents, so that it’s like Figure 4-36. Copy all the rows,
except for the header row that names each column. You’re going to paste
the data into Illustrator.

Go back to Illustrator. Using the Line Graph tool, which you already
selected from the Tool window, click-and-drag a rectangle that is approxi-
mately the size that you want your graph to be. A spreadsheet, as shown in
Figure 4-37 will pop up.

Paste the data that you copied from Excel, and then click the check mark
on the top right. You should see an image that resembles Figure 4-38.

Figure 4-38 ​ Default line graph in Illustrator

Figure 4-36 ​ CSV file opened in Excel Figure 4-37 ​ Spreadsheet to enter data in
Illustrator

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e122

Here’s your base, but you need to change some options so that the graph
doesn’t look so rough. Right-click and select Type. Uncheck the box to
Mark Data Points to match Figure 4-39.

Select Category Axis from the
drop-down menu, and choose
None for tick mark length.
Press OK. This can give you a
cleaner, less cluttered looking
graph. From here, follow the
same process that you fol-
lowed when you edited graphs
generated in R.

You can clean up the vertical
axis, simplify the value labels,
add ticks and labels on the horizontal axis for years, and add a title and
some copy. You can also change the stroke style for the actual line so that
it stands out more. The default light gray makes it seem like the data is in
the background when it should be front and center. Make these changes,
and you should end up with Figure 4-40.

Figure 4-40 ​ World population over the past five decades

Figure 4-39 ​ Graph options in Illustrator

�

Tip

If you’re going
to edit in Illustrator
and use a ba-
sic graph type,
save some time
and make the
graph directly in
Illustrator. You
don’t need to make
everything in R
first. That said,
you don’t have to
make everything in
Illustrator either.

C on ti nuous D ata 123

The main takeaway here is that you can make the same graph in both
Illustrator and R—you still would have the same end result no matter. To
that end, figure out what you’re comfortable with tool-wise and go with it.
The most important part is getting results.

Step It Up
One of the drawbacks of the standard line plot is that it implies steady
change from point A to point B. That’s about right with a measure like
world population, but some things stay at a value for a long time and then
all of a sudden see a boost or a decline. Interest rates, for example, can
stay the same for months and then drop in a day. Use a step chart, as
shown in Figure 4-41, for this type of data.

Instead of connecting point A to point B directly, the line stays at the same
value until there is a change, at which point it jumps up (or down) to the
next value. You end up with a bunch of steps.

Figure 4-41 ​ Step chart basic framework

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e124

Create a Step Chart

Illustrator doesn’t have a tool to easily create step charts. R does, how-
ever, so you can create a base chart in R and then edit in Illustrator. Are
you starting to see a pattern here?

Figure 4-42 shows the final chart. It shows the change in postage rate for
letters via the United States Postal Service. Notice the changes don’t hap-
pen on a scheduled basis. From 1995 to 1999, postage stuck at 32 cents.
That’s 4 years without a change. However, more recently, there has been a
change once a year from 2006 to 2009.

Figure 4-42 ​ Step chart showing change in postage rate

C on ti nuous D ata 125

To create the step chart in R, follow the same process you’ve been using
throughout the chapter:

1.	 Load the data.

2.	M ake sure the data is properly formatted.

3.	 Use an R function to produce a plot.

You can find historical postage rates, along with many other datasets, from
the United States Statistical Abstract. I’ve put it in a CSV file found at http://
datasets.flowingdata.com/us-postage.csv. Plug that URL into read.csv() as the
source to load the data file into R.

postage <- read.csv(“http://datasets.flowingdata.com/us-postage.csv”,

 sep=”,”, header=TRUE)

Following is the full dataset. It’s only ten points, one for each postage rate
change from 1991 to 2009, and a last point to indicate the current rate. The
first column is year and the second column is rate in U.S. dollars.

 Year Price

1 1991 0.29

2 1995 0.32

3 1999 0.33

4 2001 0.34

5 2002 0.37

6 2006 0.39

7 2007 0.41

8 2008 0.42

9 2009 0.44

10 2010 0.44

The plot() function makes it easy to create a step chart. As you would
expect, you plug in the year as the X-coordinate, price as the Y-coordinate,
and use “s” as the type, which of course stands for step.

plot(postage$Year, postage$Price, type=”s”)

You can also specify main title and axis labels, if you like.

plot(postage$Year, postage$Price, type=”s”,

 main=”US Postage Rates for Letters, First Ounce, 1991-2010”,

 xlab=”Year”, ylab=”Postage Rate (Dollars)”)

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e126

This gives you the step chart for postage rate, as shown in Figure 4-43.

Just for fun, see what the graph would like if you used a line plot instead
(Figure 4-44).

There’s an increasing trend, but notice how it looks like it was a steady
increase? At no point during 2001 and 2006 was the rate at 38 cents,
but you wouldn’t know that from the line plot unless you looked at the
raw data.

Figure 4-43 ​ Step chart created in R

Figure 4-44 ​ Line plot of postage rates

C on ti nuous D ata 127

Save the image as a PDF and then open it in Illustrator. Follow the same
process that you’ve used previously to edit the step chart to your liking.
Design-wise, I got rid of the vertical axis altogether and directly labeled
each jump (with the Type tool). I also made evenly spaced tick marks, but
only labeled the years when there were changes.

Finally, I used a gray background. This was a personal preference, but
the background helps highlight the graph, especially placed within text.
It provides more surrounding space while not being annoyingly flashy. To
make a background behind the graph and text, instead of on the top cover-
ing everything, you need to create a new layer in Illustrator. You can do this
in, what else, the Layers window. Click the button to create a new layer. By
default, the layer will be placed on top, but you want it on the bottom, so
click-and-drag the new layer below Layer 1, as shown in Figure 4-45.

You can rename your layers, which can
be especially useful when you start to
design more complex graphics. I renamed
the new layer “background.” Then draw a
rectangle using the Rectangle tool. Click
and draw to make the size you want, and
then change color via the Color window.

Smoothing and Estimation
When you have a lot of data, or the data you have is noisy, it can be hard to
spot trends and patterns. So to make it easier, you can estimate a trend
line. Figure 4-46 shows the basic idea.

Draw a line that goes through the most points as possible, and minimize
the summed distance from the points to the fitted line. The most straight-
forward route is to create a straight fitted line using the basic slope-
intercept equation you probably learned in high school.

y = mx + b

Slope is m and the intercept is b. What happens when your trend is not
linear? It doesn’t make sense to fit a straight line to data that shows winds
and curves. Instead use a statistical method created by William Cleveland
and Susan Devlin called LOESS, or locally weighted scatterplot smoothing.
It enables you to fit a curve to your data.

�

Tip

When you have a
small dataset, it
can sometimes be
useful to label
points directly
instead of using a
value axis and
grid. This places
more emphasis
on the data, and
because there
aren’t that many
points, the labels
won’t clutter and
confuse.

Figure 4-45 ​ Layer window in
Illustrator

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e128

Figure 4-46 ​ Fitting a line to data points

LOESS starts at the beginning of the data and takes small slices. At
each slice it estimates a low-degree polynomial for just the data in the
slice. LOESS moves along the data, fitting a bunch of tiny curves, and
together they form a single curve. You can Google it for more details.
There are several papers on the topic. Now get into how to use LOESS
with your data.

Fit a LOESS Curve

The story you look at is unemployment in the United States over the past
few decades. There have been ups and downs, along with seasonal fluc-
tuations. What is the extent of the overall trends? As shown in Figure 4-47,
the unemployment rate peaked in the 1980s, declined through the 1990s,
and then shot up around 2008.

P See “Robust
Locally Weight-
ed Regression
and Smoothing
Scatterplots” in
the Journal of the
American Statisti-
cal Association by
William Cleveland
for full details on
LOESS.

C on ti nuous D ata 129

Figure 4-47 ​ Unemployment rates with fitted LOESS curve

Figure 4-48 shows what the unemployment graph looks like using only
points with the R plot() function.

Load data

unemployment <-

 read.csv(

 “http://datasets.flowingdata.com/unemployment-rate-1948-2010.csv”,

 sep=”,”)

unemployment[1:10,]

Plain scatter plot

plot(1:length(unemployment$Value), unemployment$Value)

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e130

Figure 4-48 ​ Unemployment plot using only points

Now here’s what a straight fitted line would look like, as shown in
Figure 4-49.

Figure 4-49 ​ Straight fitted line

C on ti nuous D ata 131

It’s not helpful. It looks as if it ignores all the fluctuations in the unem-
ployment rate. To fit a LOESS curve instead, you use the scatter.smooth()
function.

scatter.smooth(x=1:length(unemployment$Value), y=unemployment$Value)

You can see the result in Figure 4-50. The line curves up now, accounting
for the spike in the 1980s. That’s a little better.

Figure 4-50 ​ Fitting a LOESS curve

You can adjust how fitted the curve is via the degree and span arguments
in the scatter.smooth() function. The former controls the degree of the
polynomials that are fitted, and the latter controls how smooth the curve
is. The closer the span is to zero, the closer the fit. Figure 4-51 is what you
get if you change degree to 2 and span to 0.5. Now change the colors and
adjust the axis limits.

scatter.smooth(x=1:length(unemployment$Value),

 y=unemployment$Value, ylim=c(0,11), degree=2, col=”#CCCCCC”, span=0.5)

The ups and downs of the curve are more prominent with these settings.
Try messing around with span to get a better feel for how it changes
smoothness.

c h a P t e r 4 : V i s ua l i z i n g Pat t e r n s o v e r T i m e132

Figure 4-51 ​ Fitted LOESS curve with less smoothness and higher degree polynomial

To get to the final graphic in Figure 4-47, save the image as a PDF and
bring it into Illustrator. The same tools (for example, Selection, Type, Pen)
are used to add titles, a background, and ticks for a horizontal axis. The
fitted line was made more prominent to place more focus on the trends
than on the individual data points.

Wrapping Up
It’s fun to explore patterns over time. Time is so embedded in our day-
to-day life that so many aspects of visualizing temporal data are fairly
intuitive. You understand things changing and evolving—the hard part is
figuring out by how much and learning what to look for in your graphs.

It’s easy to glance over some lines on a plot and say something is increas-
ing, and that’s good. That’s what visualization is for—to quickly get a gen-
eral view of your data. But you can take it further. You can use visualization
as an exploratory tool. Zoom in on sections of time and question why there
was a small blip on some day but nowhere else or why there was a spike
on a different day. That’s when data is fun and interesting—the more you
know about your data, the better story you can tell.

�

Tip

Vary color and
stroke styles to
emphasize the
parts in your
graphic that are
most important
to the story
you’re telling.

W rappi ng Up 133

After you learn what your data is about, explain those details in your data
graphic. Highlight the interesting parts so that your readers know where
to look. A plain graph can be cool for you, but without context, the graph is
boring for everyone else.

You used R with Illustrator to accomplish this. R built the base, and you
used Illustrator to design graphics that pointed out what was important in
the data. The covered chart types are of course only a subset of what you
can do with temporal data. You open a whole new bag of tricks when you
bring animation and interaction to the party, which you see in the next
chapter. While you move on to a new data type—proportions—you can
apply the same programming process and design principles that you
used in this chapter, even if you code in a different language.

Visualizing
Proportions

Time series data is naturally grouped by, well, time. A series of events
happen during a specific time frame. Proportion data is also grouped,
but by categories, subcategories, and population. By population, I don’t
mean just human population. Rather, population in this case repre-
sents all possible choices or outcomes. It’s the sample space.

In a poll, people might be asked if they approve, disapprove, or have no
opinion on some issue. Each category represents something, and the
sum of the parts represent a whole.

This chapter discusses how to represent the individual categories,
but still provides the bigger picture of how each choice relates to
the other. You use some of what you learned in the previous chapter
and get your first taste of interactive graphics using HTML, CSS, and
JavaScript and then have a look at graphics with Flash.

5

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 136

What to Look for in Proportions
For proportions you usually look for three things: maximum, minimum,
and the overall distribution. The first two are straightforward. Sort your
data from least to greatest, and pick the ends for your maximum and
minimum. If you were dealing with poll results, these could mean the
most popular and least popular answers from participants; or if you were
graphing calories from separate parts of a meal, you would see the big-
gest and smallest contributor to the overall calorie count.

You don’t need a chart though to show you minimum and maximum. What
you are most interested in is the distribution of proportions. How does the
selection of one poll choice compare to the others? Are calories spread
evenly across fat, protein, and carbohydrates, or does one group domi-
nate? The following chart types can help you figure that out.

Parts of a Whole
This is proportions in their simplest form. You have a set of proportions
that add up to 1 or a set of percentages that add up to 100 percent. You
want to show the individual parts relative to the other parts but you also
want to maintain the sense of a whole.

The Pie
Pie charts are the old standby. You see them everywhere these days, from
business presentations to sites that use charts as a medium for jokes. The
first known pie chart was published by William Playfair, who also invented
the line graph and bar chart, in 1801. Smart guy.

You know how they work. As shown in Figure 5-1, you start with a circle,
which represents a whole, and then cut wedges, like you would a pie. Each
wedge represents a part of the whole. Remember that last part, because
a lot of beginners make this mistake. The percentage of all the wedges
should add up to 100 percent. If the sum is anything else, you have done
something wrong.

Parts of a W hole 137

Figure 5-1 ​ Pie chart generalized

Pie charts have developed a stigma for not being as accurate as bar charts
or position-based visuals, so some think you should avoid them com-
pletely. It’s easier to judge length than it is to judge areas and angles. That
doesn’t mean you have to completely avoid them though.

You can use the pie chart without any problems just as long you know its
limitations. It’s simple. Keep your data organized, and don’t put too many
wedges in one pie.

Create a Pie Chart

Although just about every charting program enables you to make pie
charts, you can make one in Illustrator just like you did in the previous
chapter. The process of adding data, making a default chart, and then
refining should feel familiar.

To build the base of your chart—the actual pie—is fairly straightforward.
After you create a new document, select the Pie Graph tool from the Tool
window, as shown in Figure 5-2. Click and drag a rectangle so that it is
roughly the size of what you want your graph to be. You can resize it later.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 138

Figure 5-2 ​ Tool window in Illustrator

When you release the mouse button, a spreadsheet window pops up where
you enter your data. For a single pie chart, enter each data point from left
to right, and the values show up in your chart in the same order.

For this example, use the results from a poll on FlowingData. Readers
were asked what data-related field they were most interested in. There
were 831 responses.

Area of Interest Number of Votes

Statistics 172

Design 136

Business 135

Cartography 101

Information Science 80

Web Analytics 68

Programming 50

Engineering 29

Mathematics 19

Other 41

Enter the numbers in the spreadsheet in Illustrator, as shown in Fig-
ure 5-3. The order you enter the numbers will match the order the wedges
appear in your pie chart, starting at the top and then rotating clockwise.

Notice that the poll results are organized from greatest to least and then
end with the Other category. This kind of sorting can make your pie charts

Parts of a W hole 139

easier to read. Click the check mark in the top right of the pop-up when
you finish.

Figure 5-3 ​ Spreadsheet in Illustrator

The default pie chart appears with eight shades of gray, in a seemingly
random sequence with a black border, as shown in Figure 5-4. It kind of
looks like a grayscale lollipop, but you can easily do something about that.
The important thing here is that you have the base of your pie chart.

Now make the pie chart more readable
by changing some colors and adding text
to explain to readers what they are look-
ing at. As it is now, the colors don’t make
much sense. They just separate the
wedges, but you can use colors as a way
to tell readers what to look at and in what
order. You did after all go through the
trouble of sorting your data from greatest
to least.

If you start at 12 o’clock and rotate clockwise, you should see a descend-
ing order. However, because of the arbitrary color scheme, some of the
smaller wedges are emphasized with darker shades. The dark shade
acts as a highlighter, so instead, make larger wedges darker and smaller
wedges lighter. If for some reason, you want to highlight answers that
have fewer responses, you might want to color in reverse. In the case of
this poll though, you want to know what data-related fields were the most
popular.

�

Tip

�

The spreadsheet in Il-
lustrator is fairly bare
bones, so you can’t easily
manipulate or rearrange
your data. A way to
get around this
is to do all your data han-
dling in Microsoft Excel,

Figure 5-4 ​ Default pie chart

�Color can play an
important role in
how people read
your graph. It’s not
just an aesthetic
component—
although some-
times it can be.
Color can be a
visual cue just like
length or area, so
choose wisely.

Tip

�The spreadsheet
in Illustrator is
fairly bare bones,
so you can’t easily
manipulate or
rearrange your
data. A way to
get around this
is to do all your
data handling in
Microsoft Excel,
and then copy
and paste into
Illustrator.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 140

Choose the Direct Selection tool in the Tool window, and then click a
wedge. Change fill and stroke color via the controls in the Color window.
Figure 5-5 shows the same pie chart with a white stroke and wedges col-
ored from darkest to lightest. Now it’s easier to see that numbers go from
greatest to least, with the exception of the last wedge for Other.

Of course, you don’t have to be so frugal
with your colors. You can use whatever
colors you want, as shown Figure 5-6.
Although it’s usually a good idea to not
use colors that are bright—you don’t want
to blind your readers. If a blinding color
scheme fits with your topic though, go wild.

Because this is a FlowingData poll, I used
the shade of red from the FlowingData
logo and then made lighter color wedges
by decreasing opacity. You can find the
option in the Transparency window. At 0
percent opacity, the fill is completely see-
through; at 100 percent opacity, the fill is
not see-through.

Finally, add a title, a lead-in sentence, and
labels for the graph with the Type tool.
With practice, you can have a better idea
what fonts you like to use for headers and
copy, but whatever you use, Illustrator’s
alignment tools are your best friend when
it comes to placing your text. Properly
aligned and evenly spaced labels make
your charts more readable. You can also
make use of the Pen tool to create point-
ers, as shown in Figure 5-7, for the last three poll categories. These sec-
tions are too small to put the labels inside and are too close together to
place the labels adjacent.

Figure 5-5 ​ Pie chart with colors
arranged darkest to lightest

�
When you use
opacity, the fill of
the shape you are
changing will blend
with the color of
the background.
In this case, the
background is
white, which gives
a faded look the
higher the trans-
parency. If, how-
ever, the back-
ground were blue,
the shape would
appear purple.

note

Figure 5-6 ​ Colored pie chart

Parts of a W hole 141

Figure 5-7 ​ Final pie chart with labels and lead-in copy

The Donut
Your good friend the pie chart also has a lesser cousin: the donut chart.
It’s like a pie chart, but with a hole cut out in the middle so that it looks like
a donut, as shown in Figure 5-8.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 142

Figure 5-8 ​ Donut chart framework

Because there’s a hole in the middle, you don’t judge values by angle any-
more. Instead you use arc length. This introduces many of the same prob-
lems when you use a single chart with too many categories, but in cases
with fewer categories the donut chart can still come in handy.

Create a Donut Chart

It’s straightforward to make a donut chart in Illustrator. Create a pie chart
like you just did; then put a filled circle in the middle, as shown in Fig-
ure 5-9. Again, use color to guide readers’ eyes.

A lot of the time the middle of donut charts are used for a label or some
other content like was done in the figure.

Now make the same chart using Protovis, the free and open-source visu-
alization toolkit. It’s a library implemented in JavaScript and makes use of
modern browsers’ Scalable Vector Graphics (SVG) capabilities. Graphics
are generated dynamically and enable animation and interactivity, which
makes Protovis great for online graphics.

�

Tip

The main thing
to remember,
whether you use
a pie chart or
donut chart, is that
they can quickly
become cluttered.
They’re not meant
to represent a lot
of values.

P Download
Protovis at http://
vis.stanford.edu/

protovis/ and
put it in the same
directory that
you use to save
example files.

Parts of a W hole 143

Figure 5-9 ​ From pie to donut chart

Although you’re about to get into a different programming language, you
still follow the same process like you did in R and Illustrator. First, load
the data, then build the base, and finally, customize the aesthetics.

Figure 5-10 shows what you want to make. It’s similar to Figure 5-9, except
the labels are set at an angle, and when you mouse over an arc, you can
see how many votes there were for the corresponding category. Interac-
tion can get much more advanced, but you have to learn the basics before
you get fancy.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 144

Figure 5-10 ​ Donut chart using Protovis

The first thing you do is create an HTML page—call it donut.html.

<html>

<head>

 <title>Donut Chart</title>

 <script type=”text/javascript” src=”protovis-r3.2.js”></script>

 <style type=”text/css”>

 #figure {

 width: 400px;

 height: 400px;

 }

 </style>

</head>

<body>

Parts of a W hole 145

 <div id=”figure”>

 </div><!-- @end figure -->

</body>

</html>

If you’ve ever created a web page, this should be straightforward, but
in case you haven’t, the preceding is basic HTML that you’ll find almost
everywhere online. Every page starts with an <html> tag and is followed by
a <head> that contains information about the page but doesn’t show in your
browser window. Everything enclosed by the <body> tag is visible. Title the
page Donut Chart and load the Protovis library, a JavaScript file, with the
<script> tag. Then specify some CSS, which is used to style HTML pages.
Keeping it simple, set the width and height of the <div> with the id “figure”
at 400 pixels. This is where you draw our chart. The preceding HTML isn’t
actually part of the chart but necessary so that the JavaScript that follows
loads properly in your browser. All you see is a blank page if you load the
preceding donut.html file in your browser now.

Inside the figure <div>, specify that the code that you’re going to write is
JavaScript. Everything else goes in these <script> tags.

<script type=”text/javascript+protovis”>

</script>

Okay, first things first: the data. You’re still looking at the results from the
FlowingData poll, which you store in arrays. The vote counts are stored in
one array, and the corresponding category names are stored in another.

var data = [172,136,135,101,80,68,50,29,19,41];

var cats = [“Statistics”, “Design”, “Business”, “Cartography”,

 “Information Science”, “Web Analytics”, “Programming”,

 “Engineering”, “Mathematics”, “Other”];

Then specify the width and height of the donut chart and the radius length
and scale for arc length.

var w = 350,

 h = 350,

 r = w / 2,

 a = pv.Scale.linear(0, pv.sum(data)).range(0, 2 * Math.PI);

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 146

The width and height of the donut chart are both 350 pixels, and the radius
(that is, the center of the chart to the outer edge) is half the width, or 175
pixels. The fourth line specifies the arc scale. Here’s how to read it. The
actual data is on a linear scale from 0 to the sum of all votes, or total votes.
This scale is then translated to the scale to that of the donut, which is from
0 to 2π radians, or 0 to 360 degrees if you want to think of it in that way.

Next create a color scale. The more votes a category receives, the darker
the red it should be. In Illustrator, you did this by hand, but Protovis can
pick the colors for you. You just pick the range of colors you want.

var depthColors = pv.Scale.linear(0, 172).range(“white”, “#821122”);

Now you have a color scale from white to a dark red (that is #821122) on
a linear range from 0 to 172, the highest vote count. In other words, a cat-
egory with 0 votes will be white, and one with 172 votes will be dark red.
Categories with vote counts in between will be somewhere in between
white and red.

So far all you have are variables. You specified size and scale. To create
the actual chart, first make a blank panel 350 (w) by 350 (h) pixels.

var vis = new pv.Panel()

 .width(w)

 .height(h);

Then add stuff to the panel, in this case wedges. It might be a little confus-
ing, but now look over it line by line.

vis.add(pv.Wedge)

 .data(data)

 .bottom(w / 2)

 .left(w / 2)

 .innerRadius(r - 120)

 .outerRadius(r)

 .fillStyle(function(d) depthColors(d))

 .strokeStyle(“#fff”)

 .angle(a)

 .title(function(d) String(d) + “ votes”)

 .anchor(“center”).add(pv.Label)

 .text(function(d) cats[this.index]);

Parts of a W hole 147

The first line says that you’re adding wedges to the panel, one for each
point in the data array. The bottom() and left() properties orient the
wedges so that the points are situated in the center of the circle. The
innerRadius() specifies the radius of the hole in the middle whereas the
outerRadius is the radius of the full circle. That covers the structure of the
donut chart.

Rather than setting the fill style to a static shade, fill colors are deter-
mined by the value of the data point and the color scale stored as depth-
Colors, or in other words, color is determined by a function of each point. A
white (#fff) border is used, which is specified by strokeStyle(). The circular
scale you made can determine the angle of each wedge.

To get a tooltip that says how many votes there were when you mouse over
a section, title() is used. Another option would be to create a mouseover
event where you specify what happens when a user places a pointer over
an object, but because browsers automatically show the value of the title
attribute, it’s easier to use title(). Make the title the value of each data
point followed by “votes.” Finally, add labels for each section. The only
thing left to do is add May 2009 in the hole of the chart.

vis.anchor(“center”).add(pv.Label)

 .font(“bold 14px Georgia”)

 .text(“May 2009”);

This reads as, “Put a label in the center of the chart in bold 14-pixel Geor-
gia font that says May 2009.”	

The full chart is now built, so now you can render it.

vis.render();

When you open donut.html in your browser, you should see Figure 5-10.

If you’re new to programming, this section might have felt kind of daunting,
but the good news is that Protovis was designed to be learned by example.
The library’s site has many working examples to learn from and that you
can use with your own data. It has traditional statistical graphics to the
more advanced interactive and animated graphics. So don’t get discour-
aged if you were a little confused. The effort you put in now will pay off

P Visit http://
book.flowingdata

.com/ch05/donut

.html to see the
live chart and view
the source for the
code in its entirety.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 148

after you get the hang of things. Now have another look at Protovis in the
next section.

Stack Them Up
In the previous chapter you used the stacked bar chart to show data over
time, but it’s not just temporal data. As shown in Figure 5-11, you can also
use the stacked bar chart for categorical data.

Figure 5-11 ​ Stacked bar chart with categories

For example, look at approval ratings for Barack Obama as estimated
from a Gallup and CBS poll taken in July and August 2010. Participants
were asked whether they approved or disapproved of how Obama has dealt
with 13 issues.

Parts of a W hole 149

Here are the numbers in table form.

Issue Approve Disapprove No Opinion

Race relations 52 38 10

Education 49 40 11

Terrorism 48 45 7

Energy policy 47 42 11

Foreign affairs 44 48 8

Environment 43 51 6

Situation in Iraq 41 53 6

Taxes 41 54 5

Healthcare policy 40 57 3

Economy 38 59 3

Situation in Afghanistan 36 57 7

Federal budget deficit 31 64 5

Immigration 29 62 9

One option would be to make a pie chart for every issue, as shown in Fig-
ure 5-12. To do this in Illustrator, all you have to do is enter multiple rows of
data instead of just a single one. One pie chart is generated for each row.

However, a stacked bar chart enables you to compare approval ratings for
the issues more easily because it’s easier to judge bar length than wedge
angles, so try that. In the previous chapter, you made a stacked bar chart
in Illustrator using the Stacked Graph tool. This time you add some simple
interactions.

Create an Interactive Stacked Bar Chart

Like in the donut chart example, use Protovis to create an interactive
stacked bar chart. Figure 5-13 shows the final graphic. There are two
basic interactions to implement. The first shows the percentage value
of any given stack when you place the mouse pointer over it. The second
highlights bars in the approve, disapprove, and no opinion categories
based on where you put your mouse.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 150

Figure 5-12 ​ Series of pie charts

Parts of a W hole 151

Figure 5-13 ​ Interactive stacked bar chart in Protovis

To start, set up the HTML page and load the necessary Protovis JavaScript
file.

<html>

<head>

 <title>Stacked Bar Chart</title>

 <script type=”text/javascript” src=”protovis-r3.2.js”></script>

</head>

<body>

 <div id=”figure-wrapper”>

 <div id=”figure”>

 </div><!-- @end figure -->

 </div><!-- @end figure-wrapper -->

</body>

</html>

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 152

This should look familiar. You did the same thing to make a donut chart
with Protovis. The only difference is that the title of the page is “Stacked
Bar Chart” and there’s an additional <div> with a “figure-wrapper” id. We
also haven’t added any CSS yet to style the page, because we’re saving
that for later.

Now on to JavaScript. Within the figure <div>, load and prepare the data
(Obama ratings, in this case) in arrays.

<script type=”text/javascript+protovis”>

 var data = {

 “Issue”:[“Race Relations”,”Education”,”Terrorism”,”Energy Policy”,

 “Foreign Affairs”,”Environment”,”Situation in Iraq”,

 “Taxes”,”Healthcare Policy”,”Economy”,”Situation in Afghanistan”,

 “Federal Budget Deficit”,”Immigration”],

 “Approve”:[52,49,48,47,44,43,41,41,40,38,36,31,29],

 “Disapprove”:[38,40,45,42,48,51,53,54,57,59,57,64,62],

 “None”:[10,11,7,11,8,6,6,5,3,3,7,5,9]

 };

</script>

You can read this as 52 percent and 38 percent approval and disapproval
ratings, respectively, for race relations. Similarly, there were 49 percent
and 40 percent approval and disapproval ratings for education.

To make it easier to code the actual graph, you can split the data and store
it in two variables.

 var cat = data.Issue;

 var data = [data.Approve, data.Disapprove, data.None];

The issues array is stored in cat and the data is now an array of arrays.

Set up the necessary variables for width, height, scale, and colors with the
following:

 var w = 400,

 h = 250,

 x = pv.Scale.ordinal(cat).splitBanded(0, w, 4/5),

 y = pv.Scale.linear(0, 100).range(0, h),

 fill = [“#809EAD”, “#B1C0C9”, “#D7D6CB”];

The graph will be 400 pixels wide and 250 pixels tall. The horizontal scale
is ordinal, meaning you have set categories, as opposed to a continuous
scale. The categories are the issues that the polls covered. Four-fifths of

Parts of a W hole 153

the graph width will be used for the bars, whereas the rest is for padding
in between the bars.

The vertical axis, which represents percentages, is a linear scale from 0 to
100 percent. The height of the bars can be anywhere in between 0 pixels to
the height of the graph, or 250 pixels.

Finally, fill is specified in an array with hexadecimal numbers. That’s dark
blue for approval, light blue for disapproval, and light gray for no opinion.
You can change the colors to whatever you like.

Next step: Initialize the visualization with specified width and height. The
rest provides padding around the actual graph, so you can fit axis labels.
For example, bottom(90) moves the zero-axis up 90 pixels. Think of this
part as setting up a blank canvas.

 var vis = new pv.Panel()

 .width(w)

 .height(h)

 .bottom(90)

 .left(32)

 .right(10)

 .top(15);

To add stacked bars to your canvas, Protovis provides a special layout
for stacked charts appropriately named Stack. Although you use this
for a stacked bar chart in this example, the layout can also be used with
stacked area charts and streamgraphs. Store the new layout in the “bar”
variable.

 var bar = vis.add(pv.Layout.Stack)

 .layers(data)

 .x(function() x(this.index))

 .y(function(d) y(d))

 .layer.add(pv.Bar)

 .fillStyle(function() fill[this.parent.index])

 .width(x.range().band)

 .title(function(d) d + “%”)

 .event(“mouseover”, function() this.fillStyle(“#555”))

 .event(“mouseout”, function()

 this.fillStyle(fill[this.parent.index]));

Another way to think about this chart is as a set of three layers, one each
for approval, disapproval, and no opinion. Remember how you structured

P If you’re not
sure what colors to
use, ColorBrewer
at http://
colorbrewer2.org

is a good place
to start. The tool
enables you to
specify the number
of colors you want
to use and the type
of colors, and it
provides a color
scale that you can
copy in various
formats. 0to255 at
http://0to255.com
is a more general
color tool, but I use
it often.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 154

those three as an array of three arrays? That goes in layers(), where x and
y follow the scales that you already made.

For each layer, add bars using pv.Bar. Specify the fill style with fillStyle().
Notice that we used a function that goes by this.parent.index. This is so
that the bar is colored by what layer it belongs to, of which there are three.
If you were to use this.index, you would need color specifications for every
bar, of which there are 39 (3 times 13). The width of each bar is the same
across, and you can get that from the ordinal scale you already specified.

The final three lines of the preceding code are what make the graph inter-
active. Using title() in Protovis is the equivalent of setting the title attri-
bute of an HTML element such as an image. When you roll over an image
on a web page, a tooltip shows up if you set the title. Similarly, a tooltip
appears as you place the mouse pointer over a bar for a second. Here
simply make the tooltip show the percentage value that the bar represents
followed with a percent sign (%).

To make the layers highlight whenever you mouse over a bar, use event().
On “mouseover” the fill color is set to a dark gray (#555), and when the
mouse pointer is moved off, the bar is set to its original color using the
“mouseout” event.

To make the graph appear, you need to render it. Enter this at the end of
our JavaScript.

vis.render();

This basically says, “Okay, we’ve put together all the pieces. Now draw the
visualization.” Open the page in your web browser (a modern one, such as
Firefox or Safari), and you should see something like Figure 5-14.

Mouse over a bar, and the layer appears highlighted. A tooltip shows up, too.
A few things are still missing, namely the axes and labels. Add those now.

In Figure 5-13, a number of labels are on the bars. It’s only on the larger
bars though, that is, not the gray ones. Here’s how to do that. Keep in mind
that this goes before vis.render(). Always save rendering for last.

 bar.anchor(“center”).add(pv.Label)

 .visible(function(d) d > 11)

 .textStyle(“white”)

 .text(function(d) d.toFixed(0));

�

Tip

Interaction in
Protovis isn’t just
limited to mouse
over and out. You
can also set events
for things such as
click and double-
click. See Protovis
documentation for
more details.

Parts of a W hole 155

Figure 5-14 ​ Stacked bar graph without any labels

For each bar, look to see if it is greater than 11 percent. If it is, a white
label that reads the percentage rounded to the nearest integer is drawn in
the middle of the bar.

Now add the labels for each issue on the x-axis. Ideally, you want to make
all labels read horizontally, but there is obviously not enough space to
do that. If the graph were a horizontal bar chart, you could fit horizontal
labels, but for this you want to see them at 45-degree angles. You can
make the labels completely vertical, but that’d make them harder to read.

 bar.anchor(“bottom”).add(pv.Label)

 .visible(function() !this.parent.index)

 .textAlign(“right”)

 .top(260)

 .left(function() x(this.index)+20)

 .textAngle(-Math.PI / 4)

 .text(function() cat[this.index]);

This works in the same way you added number labels to the middle of
each bar. However, this time around add labels only to the bars at the bot-
tom, that is, the ones for approval. Then right-align the text and set their
absolute vertical position with textAlign() and top(). Their x-position is

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 156

based on what bar they label, each is rotated 45 degrees, and the text is
the category.

That gives the categorical labels. The labels for values on the vertical axis
are added in the same way, but you also need to add tick marks.

 vis.add(pv.Rule)

 .data(y.ticks())

 .bottom(y)

 .left(-15)

 .width(15)

 .strokeStyle(function(d) d > 0 ? “rgba(0,0,0,0.3)” : “#000”)

 .anchor(“top”).add(pv.Label)

 .bottom(function(d) y(d)+2)

 .text(function(d) d == 100 ? “100%” : d.toFixed(0));

This adds a Rule, or lines, according to y.ticks(). If the tick mark is for
anything other than the zero line, its color is gray. Otherwise, the tick is
black. The second section then adds labels on top of the tick marks.

Figure 5-15  Adding the horizontal axis

Parts of a W hole 157

You’re still missing the horizontal axis, so add another Rule, separately to
get what you see in Figure 5-15.

 vis.add(pv.Rule)

 .bottom(y)

 .left(-15)

 .right(0)

 .strokeStyle(“#000”)

Lead-in copy and remaining labels are added with HTML and CSS. There
are entire books for web design though, so I’ll leave it at that. The cool
thing here is that you can easily combine the HTML and CSS with Protovis,
which is just JavaScript and still make it look seamless.

Hierarchy and Rectangles
In 1990, Ben Shneiderman, of the University of Maryland, wanted to visu-
alize what was going on in his always-full hard drive. He wanted to know
what was taking up so much space. Given the hierarchical structure of
directories and files, he first tried a tree diagram. It got too big too fast to
be useful though. Too many nodes. Too many branches.

The treemap was his solution. As shown in Figure 5-16, it’s an area-based
visualization where the size of each rectangle represents a metric. Outer
rectangles represent parent categories, and rectangles within the parent
are like subcategories. You can use a treemap to visualize straight-up pro-
portions, but to fully put the technique to use, it’s best served with hierar-
chical, or rather, tree-structured data.

Figure 5-16 ​ Treemap generalized

P To see and
interact with the
stacked bar graph,
visit http://
book.flowingdata

.com/ch05/

stacked-bar.html.
Check out the
source code to see
how HTML, CSS,
and JavaScript fit
together.

P See http://
datafl.ws/11m
for a full history
of treemaps and
additional ex-
amples described
by the creator, Ben
Shneiderman.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 158

Create a Treemap

Illustrator doesn’t have a Treemap tool, but there is an R package by Jeff
Enos and David Kane called Portfolio. It was originally intended to visual-
ize stock market portfolios (hence the name), but you can easily apply it to
your own data. Look at page views and comments of 100 popular posts on
FlowingData and separate them by their post categories, such as visual-
ization or data design tips.

As always, the first step is to load the data into R. You can load data
directly from your computer or point to a URL. Do the latter in this example
because the data is already available online. If, however, you want to do the
former when you apply the following steps to your own data, just make sure
you put your data file in your working directory in R. You can change your
working directory through the Miscellaneous menu.

Loading a CSV file from a URL is easy. It’s only one line of code with the
read.csv()function in R (Figure 5-17).

posts <- read.csv(“http://datasets.flowingdata.com/post-data.txt”)

Figure 5-17  Loading CSV in R

Easy, right? We’ve loaded a text file (in CSV format) using read.csv() and
stored the values for page views and comments in a variable called posts. As
mentioned in the previous chapter, the read.csv() function assumes that your
data file is comma-delimited. If your data were say, tab-delimited, you would
use the sep argument and set the value to \t. If you want to load the data from
a local directory, the preceding line might look something like this.

posts <- read.csv(“post-data.txt”)

�

Tip

R is an open-
source software
environment for
statistical comput
ing. You can
download it for
free from www
.r-project.org/.
The great thing
about R is that
there is an active
community around
the software that
is always develop-
ing packages to
add functionality.
If you’re looking to
make a static chart,
and don’t know
where to start,
the R archives are
a great place to
look.

Parts of a W hole 159

This is assuming you’ve changed your working directory accordingly. For
more options and instructions on how to load data using the read.csv()
function, type the following in the R console:

?read.csv

Moving on, now that the data is stored in the posts variable, enter the fol-
lowing line to see the first five rows of the data.

posts[1:5,]

You should see four columns that correspond to the original CSV file, with
id, views, comments, and category. Now that the data is loaded in R, make
use of the Portfolio package. Try loading it with the following:

library(portfolio)

Get an error? You probably need to install the package before you begin:

install.packages(“portfolio”)

You should load the package now. Go ahead and do that. Loaded with no
errors? Okay, good, now go to the next step.

The Portfolio package does the hard work with a function called map.market().
The function takes several arguments, but you use only five of them.

map.market(id=data$id, area=posts$views, group=posts$category,

 color=posts$comments, main=”FlowingData Map”)

The id is the column that indicates a unique point, and you tell R to use
views to decide the areas of the rectangles in the treemap, the categories
to form groups, and the number of comments in a post to decide color.
Finally, enter FlowingData Map as the main title. Press Enter on your key-
board to get a treemap, as shown in Figure 5-18.

It’s still kind of rough around the edges, but the base and hierarchy is set
up, which is the hard part. Just like you specified, rectangles, each of which
represent a post, are sized by the number of page views and sorted by
category. Brighter shades of green indicate posts that received more com-
ments; posts with a lot of views don’t necessarily get the most comments.

You can save the image as a PDF in R and then open the file in Illustrator.
All regular edit options apply. You can change stroke and fill colors, fonts,
remove anything extraneous, and add comments if you like.

�

Tip

You can also
install packages
in R through the
user interface. Go
to Packages &
Data ➪ Package
Installer. Click Get
List, and then find
the package of
interest. Double-
click to install.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 160

Figure 5-18 ​ Default treemap in R

For this particular graphic you need to change the scale of the legend
that goes from –90 to 90. It doesn’t make sense to have a negative scale
because there’s no such thing as a negative number of comments. You can
also fix the labels. Some of them are obscured in the small rectangles.
Size the labels by popularity instead of the uniform scale it now has using
the Selection tool. Also thicken the category borders so that they’re more
prominent. That should give you something like Figure 5-19.

There you go. The graphic is much more readable now with unobscured
labeling and a color scale that makes more sense. You also got rid of the
dark gray background, which makes it cleaner. Oh, and of course, you
included a title and lead-in to briefly explain what the graphic shows.

Because the Portfolio package does most of the heavy lifting, the only
tough part in applying this to your own data is getting it into the right
format. Remember, you need three things. You need a unique id for each
row, a metric to size rectangles, and parent categories. Optionally, you
can use a fourth metric to color your rectangles. Check out Chapter 2,
“Handling Data,” for instructions on how to get your data into the format
you need.

P The New York
Times used an
animated treemap
to show changes
in the stock
market during the
financial crisis
in its piece titled
“How the Giants
of Finance Shrank,
Then Grew, Under
the Financial
Crisis.” See it in
action at http://
nyti.ms/9JUkWL.

P r op orti ons o ver T ime 161

Figure 5-19  Revised treemap from R to Illustrator

Proportions over Time
Often you’ll have a set of proportions over time. Instead of results for a
series of questions from a single polling session, you might have results
from the same poll run every month for a year. You’re not just interested in
individual poll results; you also want to see how views have changed over
time. How has opinion changed from one year ago until now?

This doesn’t just apply to polls, of course. There are plenty of distribu-
tions that change over time. In the following examples, you take a look at
the distribution of age groups in the United States from 1860 to 2005. With
improving healthcare and average family size shrinking, the population as
a whole is living longer than the generation before.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 162

Stacked Continuous
Imagine you have several time series charts. Now stack each line on top
of the other. Fill the empty space. What you have is a stacked area chart,
where the horizontal axis is time, and the vertical axis is a range from 0 to
100 percent, as shown in Figure 5-20.

Figure 5-20 ​ Stacked area chart generalized

So if you were to take a vertical slice of the area chart, you would get the
distribution of that time slice. Another way to look at it is as a series of
stacked bar charts connected by time.

Create a Stacked Area Chart

In this example, look at the aging population. Download the data at http://
book.flowingdata.com/ch05/data/us-population-by-age.xls. Medicine and
healthcare have improved over the decades, and the average lifespan

P r op orti ons o ver T ime 163

continues to rise. As a result, the percentage of the population in older age
brackets has increased. By how much has this age distribution changed over
the years? Data from the U.S. Census Bureau can help you see via a stacked
area chart. You want to see how the proportion of older age groups has
increased and how the proportion of the younger age groups has decreased.

You can do this in a variety of ways, but
first use Illustrator. For the stacked area
graph, it comes in the form of the Area
Graph tool (Figure 5-21).

Click and drag somewhere on a new
document, and enter the data in the
spreadsheet that pops up. You’re famil-
iar with the load data, generate graphic,
and refine process now, right?

You can see a stacked area chart, as
shown in Figure 5-22, after you enter
the data.

Figure 5-22 ​ Default stacked area chart in Illustrator

The top area goes above the 100 percent line. This happened because
the stacked area graph is not just for normalized proportions or a set of
values that add up to 100 percent. It can also be used for raw values, so
if you want each time slice to add up to 100 percent, you need to normal-
ize the data. The above image was actually from a mistake on my part; I
entered the data incorrectly. Oops. A quick fix, and you can see the graph

Figure 5-21  Area Graph Tool

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 164

in Figure 5-23. Although, you probably entered the data correctly the first
time, so you’re already here.

Figure 5-23 ​ Fixed area chart

Keep an eye out for stuff like this in your graph design though. It’s better to
spot typos and small data entry errors in the beginning than it is to finish a
design and have to backtrack to figure out where things went wrong.

Now that you have a proper base, clean up the axis and lines. Make use of
the Direct Selection tool to select specific elements. I like to remove the
vertical axis line and leave thinner tick marks for a cleaner, less clunky
look, and add the percentage sign to the numbers because that’s what
we’re dealing with. I also typically change the stroke color of the actual
graph fills from the default black to a simpler white. Also bring in some
shades of blue. That takes you to Figure 5-24.

Figure 5-24 ​ Modified colors from default

�

Tip

Be careful when
you enter data
manually. A lot
of silly mistakes
come from
transferring data
from one source
to another.

P r op orti ons o ver T ime 165

Again, this is just my design taste, and you can do what you want. Color
selection can also vary by case. The more graphs that you design, the bet-
ter feel you’ll develop for what you like and what works best.

Are you missing anything else? Well, there are no labels for the horizontal
axis. Now put them in. And while you’re at it, label the areas to indicate the
age groups (Figure 5-25).

Figure 5-25 ​ Labeled stacked area chart

I also added annotation on the right of the graph. What we’re most inter-
ested in here is the change in age distribution. We can see that from the
graph, but the actual numbers can help drive the point home.

Lastly, put in the title and lead-in copy, along with the data source on the
bottom. Tweak the colors of the right annotations a little bit to add some
more meaning to the display, and you have the final graphic, as shown in
Figure 5-26.

�

Tip

Use colors that
fit your theme
and guide your
readers’ eyes with
varying shades.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 166

Figure 5-26  Final stacked area chart

Create an Interactive Stacked Area Chart

One of the drawbacks to using stacked area charts is that they become
hard to read and practically useless when you have a lot of categories and
data points. The chart type worked for age breakdowns because there were
only five categories. Start adding more, and the layers start to look like thin
strips. Likewise, if you have one category that has relatively small counts,
it can easily get dwarfed by the more prominent categories. Making the
stacked area graph interactive, however, can help solve that problem.

You can provide a way for readers to search for categories and then adjust
the axis to zoom in on points of interest. Tooltips can help readers see
values in places that are too small to place labels. Basically, you can take

P r op orti ons o ver T ime 167

data that wouldn’t work as a static stacked area chart, but use it with an
interactive chart, and make it easy to browse and explore. You could do
this in JavaScript with Protovis, but for the sake of learning more tools
(because it’s super fun), use Flash and ActionScript.

Online visualization has slowly been shifting away from Flash
toward JavaScript and HTML5, but not all browsers support the
latter, namely Internet Explorer. Also, because Flash has been
around for years, there are libraries and packages that make cer-
tain tasks easier than if you were to try to do it with native browser
functionality.

note

Luckily you don’t have to start from scratch. Most of the work has already
been done for you via the Flare visualization toolkit, designed and main-
tained by the UC Berkeley Visualization Lab. It’s an ActionScript library,
which was actually a port of a Java visualization toolkit called Prefuse.
We’ll work off one of the sample applications on the Flare site, JobVoyager,
which is like NameVoyager, but an explorer for jobs. After you get your
development environment set up, it’s just a matter of switching in your
data and then customizing the look and feel.

You can write the code completely in ActionScript and then compile it into
a Flash file. Basically this means you write the code, which is a language
that you understand, and then use a compiler to translate the code into
bits so that your computer, or the Flash player, can understand what you
told it to do. So you need two things: a place to write and a way to compile.

The hard way to do this is to write code in a standard text editor and then
use one of Adobe’s free compilers. I say hard because the steps are defi-
nitely more roundabout, and you have to install separate things on your
computer.

The easy way to do this, and the way I highly recommend if you’re plan-
ning on doing a lot of work in Flash and ActionScript, is to use Adobe
Flex Builder. It makes the tedious part of programming with ActionScript
quicker, because you code, compile, and debug all in the same place.
The downside is that it does cost money, although it’s free for students.

P The
NameVoyager
by Martin Wat-
tenberg made the
interactive stacked
area chart popu-
lar. It is used to
show baby names
over time, and the
graph automati-
cally updates as
you type names
in the search box.
Try it out at www
.babynamewizard

.com/voyager.

�
Download
Flare for free at
http://flare

.prefuse.org/.

note

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 168

If you’re not sure if it’s worth the money, you can always download a free
trial and make your decision later. For the stacked area chart example, I’ll
explain the steps you have to take in Flex Builder.

At the time of this writing, Adobe changed the name of Flex
Builder to Flash Builder. They are similar but there are some varia-
tions between the two. While the following steps use the former,
you can still do the same in the latter. Download Flash Builder at
www.adobe.com/products/flashbuilder/. Be sure to take advan-
tage of the student discount. Simply provide a copy of your stu-
dent ID, and you get a free license. Alternatively, find an old,
lower-priced copy of Flex Builder.

note

When you’ve downloaded and installed Flex Builder, go ahead and open it;
you should see a window, as shown in Figure 5-27.

Figure 5-27 ​ Initial window on opening Flex Builder

Right-click the Flex Navigator (left sidebar) and click Import. You’ll see a
pop-up that looks like Figure 5-28.

Select Existing Projects into Workspace and click Next. Browse to where
you put the Flare files. Select the flare directory, and then make sure
Flare is checked in the project window, as shown in Figure 5-29.

P r op orti ons o ver T ime 169

Figure 5-28 ​ Import window in Flex Builder

Figure 5-29 ​ Existing projects window	

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 170

Do the same thing with the flare.apps folder. Your Flex Builder window
should look like Figure 5-30 after you expand the flare.apps/flare/apps/
folder and click JobVoyager.as.

Figure 5-30 ​ JobVoyager code opened

If you click the run button right now (the green button with the white play
triangle at the top left), you should see the working JobVoyager, as shown
in Figure 5-31. Get that working, and you’re done with the hardest part: the
setup. Now you just need to plug in your own data and customize it to your
liking. Sound familiar?

Figure 5-32 shows what you’re after. It’s a voyager for consumer spending
from 1984 to 2008, as reported by the U.S. Census Bureau. The horizontal
axis is still years, but instead of jobs, there are spending categories such
as housing and food.

Now you need to change the data source, which is specified on line 57 of
JobVoyager.as.

private var _url:String = “http://flare.prefuse.org/data/jobs.txt”;

P Visit http://
datafl.ws/16r to
try the final visual-
ization and to see
how the explorer
works with con-
sumer spending.

P r op orti ons o ver T ime 171

Figure 5-31 ​ JobVoyager application

Change the _url to point at the spending data available at http://datasets
.flowingdata.com/expenditures.txt. Like jobs.txt, the data is also a tab-
delimited file. The first column is year, the second category, and the last
column is expenditure.

private var _url:String =

 “http://datasets.flowingdata.com/expenditures.txt”;

Now the file will read in your spending data instead of the data for jobs.
Easy stuff so far.

The next two lines, line 58 and 59, are the column names, or in this case,
the distinct years that job data was available. It’s by decade from 1850 to
2000. You could make things more robust by finding the years in the loaded
data, but because the data isn’t changing, you can save some time and
explicitly specify the years.

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 172

Figure 5-32 ​ Interactive voyager for consumer spending

The expenditures data is annual from 1984 to 2008, so Change lines 58–59
accordingly.

private var _cols:Array =

 [1984,1985,1986,1987,1988,1989,1990,1991,1992,

 1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,

 2003,2004,2005,2006,2007,2008];

Next change references to the data headers. The original data file (jobs.txt)
has four columns: year, occupation, people, and sex. The spending data has
only three columns: year, category, and expenditure. You need to adapt the
code to this new data structure.

P r op orti ons o ver T ime 173

Luckily, it’s easy. The year column is the same, so you just need to change
any people references to expenditure (vertical axis) and any occupation
references to category (the layers). Finally, remove all uses of gender.

At line 74 the data is reshaped and prepared for the stacked area chart. It
specifies by occupation and sex as the categories (that is, layers) and uses
year on the x-axis and people on the y-axis.

var dr:Array = reshape(ds.nodes.data, [“occupation”,”sex”],

 “year”, “people”, _cols);

Change it to this:

var dr:Array = reshape(ds.nodes.data, [“category”],

 “year”, “expenditure”, _cols);

You only have one category (sans sex), and that’s uh, category. The x-axis
is still year, and the y-axis is expenditure.

Line 84 sorts the data by occupation (alphabetically) and then sex (numeri-
cally). Now just sort by category:

data.nodes.sortBy(“data.category”);

Are you starting to get the idea here? Mostly everything is laid out for you.
You just need to adjust the variables to accommodate the data.

Line 92 colors layers by sex, but you don’t have that split in the data, so you
don’t need to do that. Remove the entire row:

data.nodes.setProperty(“fillHue”, iff(eq(“data.sex”,1), 0.7, 0));

We’ll come back to customizing the colors of the stacks a little later.

Line 103 adds labels based occupation:

_vis.operators.add(new StackedAreaLabeler(“data.occupation”));

You want to label based on spending category, so change the line
accordingly:

_vis.operators.add(new StackedAreaLabeler(“data.category”));

Lines 213–231 handle filtering in JobVoyager. First, there’s the male/
female filter; then there’s the filter by occupation. You don’t need the for-
mer, so you can get rid of lines 215–218 and then make line 219 a plain if
statement.

�There’s some
great open-source
work going on in
visualization, and
although coding
can seem daunting
in the beginning,
many times you
can use existing
code with your
own data just by
changing variables.
The challenge is
reading the code
and figuring out
how everything
works.

Tip

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 174

Similarly, lines 264–293 create buttons to trigger the male/female filter.
We can get rid of that, too.

You’re close to fully customizing the voyager to the spending data. Go back
to the filter() function at line 213. Again, update the function so that you
can filter by the spending category instead of occupation.

Here’s line 222 as-is:

var s:String = String(d.data[“occupation”]).toLowerCase();

Change occupation to category:

var s:String = String(d.data[“category”]).toLowerCase();

Next up on the customization checklist is color. If you compiled the code
now and ran it, you would get a reddish stacked area graph, as shown in
Figure 5-33. You want more contrast though.

Color is specified in two places. First lines 86–89 specify stroke color and
color everything red:

shape: Shapes.POLYGON,

lineColor: 0,

fillValue: 1,

fillSaturation: 0.5

Then line 105 updates saturation (the level of red), by count. The code for
the SaturationEncoder() is in lines 360–383. We’re not going to use satura-
tion; instead, explicitly specify the color scheme.

First, update lines 86–89 to this:

shape: Shapes.POLYGON,

lineColor: 0xFFFFFFFF

Now make stroke color white with lineColor. If there were more spending
categories, you probably wouldn’t do this because it’d be cluttered. You
don’t have that many though, so it’ll make reading a little easier.

Next, make an array of the colors you want to use ordered by levels. Put it
toward the top around line 50:

private var _reds:Array = [0xFFFEF0D9, 0xFFFDD49E, 0xFFFDBB84, 0xFFFC8D59,

0xFFE34A33, 0xFFB30000];

P r op orti ons o ver T ime 175

Figure 5-33 ​ Stacked area graph with basic coloring

I used the ColorBrewer (referenced earlier) for these colors, which sug-
gests color schemes based on criteria that you set. It’s intended to choose
colors for maps but works great for general visualization, too.

Now add a new ColorEncoder around line 110:

var colorPalette:ColorPalette = new ColorPalette(_reds);

vis.operators.add(new ColorEncoder(“data.max”, “nodes”,

 “fillColor”, null, colorPalette));

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 176

If you get an error when you try to compile your code, check the
top of JobVoyager.as to see if the following two lines to import the
ColorPallete and Encoder objects are specified. Add them if they
are not there already.

import flare.util.palette.*;

import flare.vis.operator.encoder.*;

note

Ta Da! You now have something that looks like what we’re after (Fig-
ure 5-32). Of course, you don’t have to stop here. You can do a lot of things
with this. You can apply this to your own data, use a different color scheme,
and further customize to fit your needs. Maybe change the font or the tool-
tip format. Then you can get fancier and integrate it with other tools or add
more ActionScript, and so on.

Point-by-Point
One disadvantage of the stacked area graph is that it can be hard to see
trends for each group because the placement of each point is affected by
the points below it. So sometimes a better way is to plot proportions as a
straight up time series like the previous chapter covered.

Luckily, it’s easy to switch between the two in Illustrator. The data entry is
the same, so you just need to change the graph type. Select the line plot
instead of the stacked area in the beginning, and you get this, the default
graph in Figure 5-34.

Clean up and format to your liking in the same way you did with the time
series examples, and you have the same data from a different point of view
(Figure 5-35).

It’s easier to see the individual trends in each age group with this time
series plot. On the other hand, you do lose the sense of a whole and dis-
tributions. The graph you choose should reflect the point you’ want to get
across or what you want to find in your data. You can even show both views
if you have the space.

P r op orti ons o ver T ime 177

Figure 5-34 ​ Default line plot

Figure 5-35 ​ Labeled line plot cleaned up

c h a P t e r 5 : V i s ua l i z i n g P r o p o r t i o n s 178

Wrapping Up
The main thing that sets proportions apart from other data types is that
they represent parts of a whole. Each individual value means something,
but so do the sum of all the parts or just a subset of the parts. The visual-
ization you design should represent these ideas.

Only have a few values? The pie chart might be your best bet. Use donut
charts with care. If you have several values and several categories, con-
sider the stacked bar chart instead of multiple pie charts. If you’re looking
for patterns over time, look to your friend the stacked area chart or go for
the classic time series. With these steady foundations, your proportions
will be good to go.

When it comes time to design and implement, ask yourself what you want
to know about your data, and then go from there. Does a static graphic tell
your story completely? A lot of the time the answer will be yes, and that’s
fine. If, however, you decide you need to go with an interactive graphic,
map out on paper what should happen when you click objects and what
shouldn’t. It gets complicated quickly if you add too much functionality, so
do your best to keep it simple. Have other people try interacting with your
designs to see if they understand what’s going on.

Finally, while you’re programming—especially if you’re new to code—
you’re undoubtedly going to reach a point where you’re not sure what to
do next. This happens to me all the time. When you get stuck, there’s no
better place than the web to find your solution. Look at documentation if
it’s available or study examples that are similar to what you’re trying to do.
Don’t just look at the syntax. Learn the logic because that’s what’s going to
help you the most. Luckily there are libraries such as Protovis and Flare
that have many examples and great documentation.

In the next chapter, we move towards deeper analysis and data interpreta-
tion and come back to your good statistical friend. You put R to good use as
you study relationships between data sets and variables. Ready? Let’s go.

Visualizing
Relationships

Statistics is about finding relationships in data. What are the similari-
ties between groups? Within groups? Within subgroups? The relation-
ship that most people are familiar with for statistics is correlation. For
example, as average height goes up in a population, most likely aver-
age weight will go up, too. This is a simple positive correlation. The
relationships in your data, just like in real life, can get more compli-
cated though as you consider more factors or find patterns that aren’t
so linear. This chapter discusses how to use visualization to find such
relationships and highlight them for storytelling.

As you get into more complex statistical graphics, you can make heavy
use of R in this chapter and the next. This is where the open-source
software shines. Like in previous chapters, R does the grunt work, and
then you can use Illustrator to make the graphic more readable for an
audience.

6

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 180

What Relationships to Look For
So far you looked at basic relationships with patterns in time and propor-
tions. You learned about temporal trends, and compared proportions
and percentages to see what’s the least and greatest and everything
in between. The next step is to look for relationships between different
variables. As something goes up, does another thing go down, and is it
a causal or correlative relationship? The former is usually quite hard to
prove quantitatively, which makes it even less likely you can prove it with
a graphic. You can, however, easily show correlation, which can lead to a
deeper more exploratory analysis.

You can also take a step back to look at the big picture, or the distribution
of your data. Is it actually spaced out or is it clustered in between? Such
comparisons can lead to stories about citizens of a country or how you
compare to those around you. You can see how different countries com-
pare to one another or general developmental can progress around the
world, which can aid in decisions about where to provide aid.

You can also compare multiple distributions for an even wider view of your
data. How has the makeup of a population changed over time? How has it
stayed the same?

Most important, in the end, when you have all your graphics in front of you,
ask what the results mean. Are they what you expected? Does anything
surprise you?

This might seem abstract and hand-wavy, so now jump right into some
concrete examples on how to look at relationships in your data.

Correlation
Correlation is probably the first thing you think of when you hear about
relationships in data. The second thing is probably causation. Now maybe
you’re thinking about the mantra that correlation doesn’t equal causa-
tion. The first, correlation, means one thing tends to change a certain way
as another thing changes. For example, the price of milk per gallon and
the price of gasoline per gallon are positively correlated. Both have been
increasing over the years.

C orr elati on 181

Now here’s the difference between correlation and causation. If you
increase the price of gas, will the price of milk go up by default? More
important, if the price of milk did go up, was it because of the increase in
the gas price or was it an outside factor, such as a dairy strike?

It’s difficult to account for every outside, or confounding factor, which
makes it difficult to prove causation. Researchers spend years figuring
stuff like that out. You can, however, easily find and see correlation, which
can still be useful, as you see in the following sections.

Correlation can help you predict one metric by knowing another. To see
this relationship, return to scatterplot and multiple scatterplots.

More with Points
In Chapter 4, “Visualizing Patterns over Time,” you used a scatterplot to
graph measurements over time, where time was on the horizontal axis
and a metric of interest was on the vertical axis. This helped spot temporal
changes (or nonchanges). The relationship was between time and another
factor, or a variable. As shown in Figure 6-1, however, you can use the
scatterplot for variables other than time; you can use a scatterplot to look
for relationships between two variables.

If two metrics are positively correlated (Figure 6-2, left), dots move higher
up as you read the graph from left to right. Conversely, if a negative cor-
relation exists, the dots appear lower, moving from left to right, as shown
in the middle of Figure 6-2.

Sometimes the relationship is straightforward, such as the correlation
between peoples’ height and weight. Usually, as height increases, weight
increases. Other times the correlation is not as obvious, such as that
between health and body mass index (BMI). A high BMI typically indicates
that someone is overweight; however, muscular people for example, who
can be athletically fit, could have a high BMI. What if the sample population
were body builders or football players? What would relationships between
health and BMI look like?

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 182

Figure 6-1 ​ Scatterplot framework, comparing two variables

Figure 6-2 ​ Correlations shown in scatterplots

C orr elati on 183

Remember the graph is only part of the story. It’s still up to you to inter-
pret the results. This is particularly important with relationships. You
might be tempted to assume a cause-and-effect relationship, but most of
the time that’s not the case at all. Just because the price of a gallon of gas
and world population have both increased over the years doesn’t mean the
price of gas should be decreased to slow population growth.

Create a Scatterplot

In this example, look at United States crime rates at the state level, in
2005, with rates per 100,000 population for crime types such as murder,
robbery, and aggravated assault, as reported by the Census Bureau. There
are seven crime types in total. Look at two of them to start: burglary and
murder. How do these relate? Do states with relatively high murder rates
also have high burglary rates? You can turn to R to investigate.

As always, the first thing you do is load the data into R using read.csv().
You can download the CSV file at http://datasets.flowingdata.com/
crimeRatesByState2005.csv, but now load it directly into R via the URL.

Load the data

crime <-

 read.csv(‘http://datasets.flowingdata.com/crimeRatesByState2005.csv’,

 sep=”,”, header=TRUE)

Check out the first few lines of the data by typing the variable, crime, fol-
lowed by the rows you want to see.

crime[1:3,]

Following is what the first three rows look like.

 state murder forcible_rape robbery aggravated_assault burglary

1 United States 5.6 31.7 140.7 291.1 726.7

2 Alabama 8.2 34.3 141.4 247.8 953.8

3 Alaska 4.8 81.1 80.9 465.1 622.5

 larceny_theft motor_vehicle_theft population

1 2286.3 416.7 295753151

2 2650.0 288.3 4545049

3 2599.1 391.0 669488

The first column shows the state name, and the rest are rates for the dif-
ferent types of crime. For example, the average robbery rate for the United

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 184

States in 2005 was 140.7 per 100,000 population. Use plot() to create the
default scatterplot of murder against burglary, as shown in Figure 6-3.

plot(crime$murder, crime$burglary)

Figure 6-3 ​ Default scatterplot of murder against burglary

It looks like there’s a positive correlation in there. States that have higher
murder rates tend to have higher burglary rates, but it’s not so easy to see
because of that one dot on the far right. That one dot—that outlier—is forc-
ing the horizontal axis to be much wider. That dot happens to represent
Washington, DC, which has a much higher murder rate of 35.4. The states
with the next highest murder rates are Louisiana and Maryland, which
were 9.9.

For the sake of a graphic that is more clear and useful, take out Wash-
ington, DC, and while you’re at it, remove the United States averages and
place full focus on individual states.

crime2 <- crime[crime$state != “District of Columbia”,]

crime2 <- crime2[crime2$state != “United States”,]

C orr elati on 185

The first line stores all rows that aren’t for the District of Columbia in
crime2. Similarly, the second line filters out the United States averages.

Now when you plot murder against burglary, you get a clearer picture, as
shown in Figure 6-4.

plot(crime2$murder, crime2$burglary)

Figure 6-4 ​ Scatterplot after filtering data

Although, it could probably be better if the axes started at zero, so do that,
too. The x-axis should go from 0 to 10, and the y-axis will go from 0 to
1,200. This shifts the dots up and to the right, as shown in Figure 6-5.

plot(crime2$murder, crime2$burglary, xlim=c(0,10), ylim=c(0, 1200))

You know what would make this plot even more useful? A LOESS curve like
you saw in Chapter 4. This would help you see the relationship between
burglary and murder rates. Use scatter.smooth() to make the line with the
dots. The result is shown in Figure 6-6.

scatter.smooth(crime2$murder, crime2$burglary,

 xlim=c(0,10), ylim=c(0, 1200))

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 186

Figure 6-5 ​ Scatterplot with axes starting at zero

Figure 6-6 ​ Using a curve to estimate relationship

�
For the sake of
simplicity, Wash-
ington, DC was
removed from the
dataset to see the
rest of the data
better. It is impor-
tant, however,
to consider the
importance of
the outliers in
your data. This is
discussed more in
Chapter 7, “Spot-
ting Differences.”

note

C orr elati on 187

It’s not bad for a base chart, and if the graphic were just for analysis, you
could stop here. However, if you have more than an audience of one, you
can improve the readability a lot with a few small changes, as shown in
Figure 6-7.

I put less emphasis on the surrounding box by getting rid of the thick bor-
der, and direct your attention to the curve by making it thicker and darker
than the dots.

Figure 6-7 ​ Revised scatterplot on murder versus burglary

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 188

Exploring More Variables
Now that you’ve plotted two variables against each other, the obvious next
step is to compare other variables. You could pick and choose the vari-
ables you want to compare and make a scatterplot for each pair, but that
could easily lead to missed opportunities and ignoring interesting spots in
the data. You don’t want that. So instead, you can plot every possible pair
with a scatterplot matrix, as shown in Figure 6-8.

Figure 6-8 ​ Scatterplot matrix framework

C orr elati on 189

This method is especially useful during your data exploration phases. You
might have a dataset in front of you but have no clue where to start or what
it’s about. If you don’t know what the data is about, your readers won’t
either.

The scatterplot matrix reads how you expect. It’s usually a square grid
with all variables on both the vertical and horizontal. Each column repre-
sents a variable on the horizontal axis, and each row represents a variable
on the vertical axis. This provides all possible pairs, and the diagonal is
left for labels because there’s no sense in comparing a variable to itself.

Create a Scatterplot Matrix

Now come back to your crime data. You have seven variables, or rates for
crime types, but in the previous example, you compared only two: murder
and burglary. With a scatterplot matrix, you can compare all the crime
types. Figure 6-9 shows what you’re making.

As you might expect, a lot of positive correlations can exist. The correla-
tion between burglary and aggravated assault, for example, seems to be
relatively high. As the former goes up, the latter also tends to increase,
and vice versa; however, the relationship between murder and larceny
theft is not so clear. You shouldn’t make any assumptions, but it should be
easy to see how the scatterplot matrix can be useful. At first glance, it can
look confusing with all the lines and plots, but read from left to right and
top to bottom, and you can take away a lot of information.

Luckily, R makes creating a scatterplot matrix as easy as it is to make a
single scatterplot, albeit creation of the matrix is not as robust. Again, use
the plot() function, but instead of passing two columns, pass the whole
data frame, minus the first column because that’s just state names.

plot(crime2[,2:9])

This gives you a matrix as shown in Figure 6-10, which is almost what you
want. It’s still missing fitted curves though that can help you see relation-
ships a bit better.

�

Tip

�

To tell a complete
story, you have to
understand your
data. The more
you know about
your data, the better the story
you can tell.

�To tell a complete
story, you have to
understand your
data. The more
you know about
your data, the
better the story
you can tell.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 190

Figure 6-9 ​ Scatterplot matrix of crime rates

To create a scatterplot matrix with fitted LOESS curves, you can use the
pairs() function instead, but it’s equally as simple to call. The result is
shown in Figure 6-11.

pairs(crime2[,2:9], panel=panel.smooth)

�The panel argument in pairs() takes a function of x and y. In this
example, you use panel.smooth(), which is a native function in R and
results in a LOESS curve. You can also specify your own function.

tip

C orr elati on 191

Figure 6-10 ​ Default scatterplot matrix in R

Now you have a nice framework to work off of, and you can edit it further
to make it more readable (refer to Figure 6-9). Save the graphic as a PDF
and open the file in Illustrator.

Mainly, you need to get rid of clutter and make it easier to see what’s impor-
tant. That’s the crime types and trend lines first, the points second, and the
axes last, and you should see that order in the choice of color and sizes. The
size of the labels across the diagonal increase, and the boxes are grayed
out. Then make the trend lines thicker and provide more contrast between
the lines and the dots. Finally, the borders and grid lines are made more
subtle with a thinner stroke width and lighter gray. Compare Figure 6-9 to
Figure 6-11. There’s a lot less visual vibration in Figure 6-9, right?

�

Tip

Decide what
part of the story
you want to tell
and design
your graphic to
emphasize those
areas, but also
take care not to
obscure facts.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 192

Figure 6-11 ​ Scatterplot matrix with LOESS curves

Bubbles
Ever since Hans Rosling, Professor of International Health at Karolinska
Institute and chairman of the Gapminder Foundation, presented a motion
chart to tell his story of the wealth and health of nations, there has been
an affinity for proportional bubbles on an x-y axis. Although the motion
chart is animated to show changes over time, you can also create a static
version: the bubble chart.

A bubble chart can also just be straight up proportionally sized bubbles,
but now consider how to create the variety that is like a scatterplot with a
third, bubbly dimension.

P Check out Hans
Rosling’s now fa-
mous talks on the
Gapminder site at
www.gapminder

.org, including a
BBC documen-
tary on the joy of
statistics.

C orr elati on 193

Figure 6-12 ​ Bubble chart framework

The advantage of this chart type is that it enables you to compare three
variables at one time, as shown in Figure 6-12. One variable is on the
x-axis, one is on the y-axis, and the third is represented by the area size of
the bubbles.

Take note of that last part because people often size the bubbles incor-
rectly. As discussed in Chapter 1, “Telling Stories with Data,” bubbles
should be sized by area. They should not be sized by radius, diameter, or
circumference, which can easily happen. If you go with software defaults,
you might end up with circles that are too big and too small.

Now look at a quick example to emphasize this point. Imagine you run ad
sales for your company, and you’re testing two banner ads on a site. You
want to know which ad converts better. Over the course of a month, both
ads run the same number of times; however, the number of clicks is dif-
ferent. The first banner was clicked 150 times, whereas the second banner

�

Tip

When using
circles to repre­
sent data, size by
the area rather
than the diameter,
radius, or
circumference.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 194

was clicked 100 times. So the first banner performed 50 percent better
than the second. Figure 6-13 shows a circle, sized by area, for each ban-
ner. The circle for the first banner is 50 percent bigger than the second.

Figure 6-13 ​ Bubbles sized by area

In Figure 6-14, you see how the bubbles compare to each other if they are
sized by radius.

Figure 6-14 ​ Bubbles sized by radius

The radius for the first circle, representing the first banner, is 50 percent
larger than the radius for the second banner, which makes the area of the
first circle more than twice that of the second. Although this doesn’t seem
like a huge deal with only two data points, which are easy to compare, the
challenge becomes more obvious when you use more data.

Create a Bubble Chart

Look at the final chart in Figure 6-15 to see what you’re making. It’s the
same crime data relating murder and burglary rate by state, but popula-
tion is added as a third dimension. Do states with more people have higher
crime rates? It’s not clear-cut (as is usually the case). Large states such
as California, Florida, and Texas are near the top-right quadrant, but New
York and Pennsylvania have relatively low burglary rates. Similarly, Loui-
siana and Maryland, which have smaller populations, are far on the right.

C orr elati on 195

Figure 6-15 ​ Bubble plot showing crime in the United States

To start, load the data in R with read.csv(). This is the same data that you
just used, except a column for population was added, and Washington, DC
is not included. It’s also tab-delimited instead of comma-delimited. No
biggie. Simply change the sep argument in the function.

crime <-

 read.csv(“http://datasets.flowingdata.com/crimeRatesByState2005.tsv”,

 header=TRUE, sep=”\t”)

Then jump right into drawing some bubbles with the symbols() func-
tion. The x-axis is murder rate, the y-axis is burglary rate, and radius of
bubbles is sized proportionally to population. Figure 6-16 shows the result.
Want to do try more with symbols()? You’ll get to that soon.

symbols(crime$murder, crime$burglary, circles=crime$population)

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 196

Figure 6-16 ​ Default bubble chart

All done, right? Wrong. That was a test. The preceding sizes the circles
such that population is proportional to the radius. You need to size the cir-
cles proportional to the area. The relative proportions are all out of whack
if you size by radius. Is California’s population, represented by that giant
circle in the middle, that much higher than that of all of the other states?

To size radiuses correctly, look to the equation for the area of a circle.

Area of circle = πr2

The area of each bubble represents population. What you need to find out
is how to size the radius, so isolate the radius to find that it should be pro-
portional to the square root of the area.

r = √
	

	
(Area of circle / π)

You can actually get rid of the π altogether because it’s a constant, but leave
it in there for the sake of clarity. Now instead of using crime$population to
size the circle radiuses, find the square root and then plug it into symbols().

radius <- sqrt(crime$population/ pi)

symbols(crime$murder, crime$burglary, circles=radius)

C orr elati on 197

The first row of code simply creates a new vector of square root values
stored in radius. Figure 6-17 shows the bubble plot with radiuses sized
correctly, but it’s a mess because the states with populations smaller than
California are a little bigger now.

You need to scale down all circles to see what’s going on. The inches argu-
ment of symbols() sets the size of the largest circle in, well, inches. By default
it’s 1 inch, so in Figure 6-17 California is sized at 1 inch, and the rest of the
circles are scaled accordingly. You can make the maximum smaller, say 0.35
inches, while still maintaining the right proportions. You also can change
color using fg and bg to change stroke color and fill color, respectively. You
can also add your own labels to the axes. Figure 6-18 shows the output.

symbols(crime$murder, crime$burglary, circles=radius, inches=0.35,

 fg=”white”, bg=”red”, xlab=”Murder Rate”, ylab=”Burglary Rate”)

Figure 6-17 ​ Default bubble chart with correctly sized circles

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 198

Figure 6-18 ​ Bubble chart with bubbles scaled down

Now you’re getting somewhere.

You also can make a chart with other shapes, too, with symbols()—you can
make squares, rectangles, thermometers, boxplots, and stars. They take
different arguments than the circle. The squares, for example, use side
length to size; however, like with bubbles, you want the squares to be sized
by area. In other words, you need to size the square sides by the square
root of the area.

Figure 6-19 shows what squares look like using the following line of code:

symbols(crime$murder, crime$burglary,

 squares=sqrt(crime$population), inches=0.5)

Stick with circles for now. The chart in Figure 6-18 shows some sense
of distribution, but you don’t know which circle represents each state.
So now add labels. with text(), whose arguments are x-coordinates,

C orr elati on 199

y-coordinates, and the actual text to print—you have all of these. Like
the bubbles, the x is murders and the y is burglaries. The actual labels
are state names, which is the first column in your data frame.

text(crime$murder, crime$burglary, crime$state, cex=0.5)

The cex argument controls text size, which is 1 by default. Values greater
than one can make the labels bigger and the opposite for less than one. The
labels can center on the x- and y-coordinates, as shown in Figure 6-20.

At this point, you don’t need to make a ton of changes to get your graphic
to look like the final one in Figure 6-15. Save the chart you made in R as a
PDF, and open it in your favorite illustration software to refine the graphic
to what you want it to look and read like. You can thin the axis lines and
remove the surrounding box to simplify a bit. You can also move around
some of the labels, particularly in the bottom left, so that you can actu-
ally read the state names; then bring the bubble for Georgia to the front—
before it was hidden by the larger Texas bubble.

There you go. Type in ?symbols in R for more plotting options. Go wild.

Figure 6-19 ​ Using squares instead of circles

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 200

Figure 6-20 ​ Bubble chart with labels

Distribution
You’ve probably heard of mean, median, and mode. Schools teach you this
stuff in high school; although they should teach it much sooner. The mean
is the sum of all data points divided by the number of points. To find the
median, you order your data from least to greatest and mark the halfway
point. The mode is the number that occurs the most. These are well and
good and super easy to find, but they don’t give you the whole story. They
describe how parts of your data are distributed. If you visualize everything
though, you can see the full distribution.

Distributi on 201

A skew to the left means most of your data is clustered in the lower side of
the full range. A skew to the right means the opposite. A flat line means a
uniform distribution, whereas the classic bell curve shows a clustering at
the mean and a gradual decrease in both directions.

Next take a look at a classic plot, mainly to get a feel for distribution, and
then move on to the more practical histogram and density plot.

Old School Distribution
In the 1970s, when computers weren’t so popular, most data graphics
were drawn by hand. Some of the tips offered by famed statistician John
Tukey, in his book Exploratory Data Analysis, were centered around using
pen and pencil to vary darkness of lines and shades. You could also use
hash patterns as a fill to differentiate between variables.

The stem-and-leaf plot, or stemplot, was designed in a similar manner.
All you have to do is write the numbers using an ordered method, and the
end result is a rough view of the distribution. The method was particularly
popular in the 1980s (when using statistical graphics for analysis was
gaining momentum), because it was easy to include the graphic—even if
you were writing with a typewriter.

Although there are easier and faster ways to look at distributions today,
it’s useful to take a look because you can still apply the same principles
making a stem-and-leaf plot as you would a histogram.

Create a Stem-and-Leaf

If you want to live on the wild side, you can draw a stem-and-leaf plot
with pen and paper, but you can make one much quicker in R. Figure 6-21
shows a stem-and-leaf plot for worldwide birth rates in 2008, as esti-
mated by the World Bank.

As you can see, it’s basic. Base numbers are on the left and trailing num-
bers are on the right. In this case, the decimal point is at the bar (|), so the
interval with the most countries in it is the one that ranges from 10 to 12
live births per 1,000 population. There’s also one country, Niger, with a
birth rate between 52 and 54.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 202

Figure 6-21 ​ Stem-and-leaf plot showing worldwide birth rates

Here’s how you would draw this by hand. Write numbers 8 to 52 in inter-
vals of 2, top to bottom. Draw a line to the right of the column of numbers.
Then go down each row of your data and add numbers accordingly. If a
country has a birth rate of 8.2, you add a 2 to the right of the 8. If there is a
country with a rate of 9.9, it also goes in the row with an 8. You write a 9.

This can obviously get tedious if you have a lot of data, so here’s how to
make a stemplot in R. After you load your data, simply use the stem()
function.

birth <- read.csv(“http://datasets.flowingdata.com/birth-rate.csv”)

stem(birth$X2008)

That’s all there is to it. If you want to style it, as shown in Figure 6-22, you
can copy the text in R, and paste it elsewhere—but this method is outdated
and probably better off with a histogram. The histogram is basically the
more graphical version of the stem-and-leaf.

Distributi on 203

Figure 6-22 ​ Revised stem-and-leaf plot

Distribution Bars
Looking at the steam-and-leaf plot in Figure 6-22, you can spot frequency
in specific ranges. The more countries with a birth rate in a range, the
more numbers that are drawn, and the longer the row will be. Now flip
the plot on its side so that the rows become columns. The higher the col-
umn, the more countries there are in that range. Now change the column
of numbers into a simple bar or rectangle. Now you have a histogram, as
shown in Figure 6-23.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 204

Figure 6-23 ​ Histogram framework

Bar height represents frequency, and bar width does not represent any-
thing. The horizontal and vertical axes are continuous. In contrast, the
horizontal axis of a bar chart is discrete. You have set categories and usu-
ally space in between each bar when you use a bar chart.

Often, people who don’t read data graphics on a regular basis mistake the
horizontal axis to be time. It can be time, but there’s no restriction. This is
especially important when you consider your audience. If your graphic is
for a more general readership, you need to explain how to read the graph
and what important points to note. Also keep in mind that a lot of people
aren’t familiar with the concept of distributions. But design your graphic
clearly, and you can teach them.

Create a Histogram

Like the stem-and-leaf, the histogram is just as easy to create in R. Using
the hist() function, again plot the distribution of birth rates worldwide, as
shown in Figure 6-24. Notice how the shape is similar to the stem-and-leaf
in Figure 6-22?

Distributi on 205

Figure 6-24 ​ Distribution of birth rates worldwide

Assuming you’ve already loaded the data from your previous example, run
the hist() function with the same numbers from 2008.

hist(birth$X2008)

This is the default histogram shown in Figure 6-25.

There are ten bars or ranges in the default histogram, but you can change
that to what you like with the breaks argument. For example, you could
have fewer, wider bars, as shown in Figure 6-26. It has only five breaks.

hist(birth$X2008, breaks=5)

You can also go the other way and make a histogram with more skinny
bars, say 20 of them (Figure 6-27).

hist(birth$X2008, breaks=20)

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 206

Figure 6-25 ​ Default histogram

Figure 6-26 ​ Histogram with five breaks

Distributi on 207

Figure 6-27 ​ Histogram with 20 breaks

The number of breaks you should choose depends on the data that you
visualize. If most of your data is clustered toward the beginning, you might
want to have more breaks so that you can see the variations instead of one
high bar. On the other hand, if you don’t have that much data or the num-
bers are evenly distributed, thicker bars could be more appropriate. The
good news is that it’s easy to change and experiment.

For the purposes of the birth rate data, the default number of breaks is
fine. You can see that there are some countries with birth rates under 10,
but most countries have birth rates between 10 and 25 live births per 1,000
population. A number of countries are also above the 25 mark, but rela-
tively fewer compared to the lower groups.

At this point, you can save the output as a PDF and make further edits in
Illustrator. Most of the edits will be similar to what you did with the bar
charts in Chapter 4, but a few things are specific to the histogram that you
can add to make it read better and to explain to readers what the graphic
is about.

�

Tip

The default
number of breaks
for your histogram
isn’t always the
best choice. Play
around with the
options and decide
what makes the
most sense for
your particular
dataset.

�

Tip

You can find
mean, median,
maximum, and
quartiles easily
with the summary()
function in R.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 208

In the final graphic in Figure 6-24, you can see some of the important fac-
ets of the distribution, namely the median, maximum, and minimum. The
lead-in copy, of course, is another opportunity to explain, and you can add
a little bit of color so that the histogram doesn’t look like a wireframe.

Continuous Density
Although the value axis is continuous, the distribution is still broken up
into a discrete number of bars. Each bar represents a collection of items,
or in the case of the previous examples, countries. What sort of variation
is occurring within each bin? With the stem-and-leaf plot, you could see
every number, but it’s still hard to gauge the magnitude of differences,
which is similar to how you used Cleveland and Devlin’s LOESS in Chapter
4 to see trends better; you can use a density plot to visualize the smaller
variations within a distribution.

Figure 6-28 ​ Density plot framework

Distributi on 209

Figure 6-28 shows the use of a curve instead of bars. The total area under
the curve is equal to one, and the vertical axis represents the probability
or a proportion of a value in the sample population.

Create a Density Plot

Returning to the birth rates data, you need to take one extra step to make
a density plot. It’s a small step. You need to use the density() function to
estimate the points for the curve; however, the data can’t have any missing
values. Actually 15 rows are in the 2008 data without any values.

In R these spots with missing values are labeled as NA. Luckily, it’s easy to
filter those spots out.

birth2008 <- birth$X2008[!is.na(birth$X2008)]

This line of code retrieves the 2008 column from the birth data frame, and
then basically you request only the rows that don’t have missing values
and store it in birth2008. More technically speaking, is.na() checks each
item in the birth$X2008 vector and returns an equal-length vector of true
and false values known as booleans. When you pass a vector of booleans
into the index of a vector, only the items that correspond to true values
are returned. Don’t worry if this confuses you. You don’t have to know the
technical details to get it to work. If, however, you plan on writing your own
functions, it helps to know the language. It can also make documentation
easier to read, but you’ll tend to pick it up with practice.

Now you have the clean birth rate data stored in birth2008, so you can
pass it into the density() function to estimate a curve and store the results
in d2008.

d2008 <- density(birth2008)

This gives the x- and y-coordinates for the curve. The cool thing about this
is that you can save the coordinates into a text file in case you want to use
a different program to make the plot. Type d2008 in the R console to see
what’s stored in the variable. Here’s what you get.

Call:

 density.default(x = birth2008)

Data: birth2008 (219 obs.); Bandwidth ‘bw’ = 3.168

�
In this example,
missing values
are removed
for the sake of
simplicity. When
you visualize and
explore your own
data, you should
look more closely
at missing values.
Why are the
values missing?
Should they be set
to zero or removed
completely?

note

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 210

 x y

 Min. :-1.299 Min. :6.479e-06

 1st Qu.:14.786 1st Qu.:1.433e-03

 Median :30.870 Median :1.466e-02

 Mean :30.870 Mean :1.553e-02

 3rd Qu.:46.954 3rd Qu.:2.646e-02

 Max. :63.039 Max. :4.408e-02

The main thing you care about is the x and y. That shows the breakdown of
the coordinates, but if you want to access all of them you could enter the
following.

d2008$x

d2008$y

Then to store them in a text file, use write.table(). As arguments, it takes
the data you want to save, the filename you want to save it as, the separa-
tor you want to use (for example, comma or tab), and some others. To save
the data as a basic tab-delimited text file, do the following.

d2008frame <- data.frame(d2008$x, d2008$y)

write.table(d2008frame, “birthdensity.txt”, sep=”\t”)

The file birthdensity.txt should now be available in your working directory.
If you don’t want the rows to be numbered and a comma as the separator
instead of tabs, you can do that just as easily.

write.table(d2008frame, “birthdensity.txt”, sep=”,”, row.names=FALSE)

Now you can load that data into Excel, Tableau, Protovis, or whatever you
want that accepts delimited text, which is just about everything.

Back to the actual density plot. Remember, you already have the coordi-
nates for your density plot. You just have to put them in graph form with,
naturally, the plot() function. Figure 6-29 shows the result.

plot(d2008)

You can also make a filled density plot if you want, using plot() along with
polygon(), as shown in Figure 6-30. You use the former to set the axes, but
with the type set to “n” for no plotting. Then use the latter to actually draw
the shape; set the fill color to a dark red and the border to a light gray.

plot(d2008, type=”n”)

polygon(d2008, col=”#821122”, border=”#cccccc”)

�
The write.table()
function saves
new files in your
current working
directory. Change
your working
directory via the
main menu or with
setwd().	

note

�

Tip

If you like to do
your plotting with
different software
other than R but
want to make use
of R’s computing
functionality, you
can save any or all
of your results with
write.table().

Distributi on 211

Figure 6-29 ​ Density plot for birth rate

Figure 6-30 ​ Filled density plot

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 212

No need to stop here though. You can plot the histogram and density plot
together to get the exact frequencies represented by the bars and the
estimated proportions from the curve, as shown in Figure 6-31. Use the
histogram() (from the lattice package) and lines() functions. The former
creates a new plot whereas the latter adds lines to an existing plot.

library(lattice)

histogram(birth$X2008, breaks=10)

lines(d2008)

Figure 6-31 ​ Histogram and density plot combined

So there’s a lot you can do and plenty of variations, but the math and
geometry are still the same as the old-school stem-and-leaf plot. You’re
counting, aggregating, and grouping. The best variation can vary based
on what data you have. Figure 6-32 shows a more finished graphic. I de-
emphasized the axis lines, rearranged the labels, and added a pointer for
median. The vertical axis, which represents density, isn’t especially use-
ful in this graphic, but I left it in there for the sake of completeness.

C omparis on 213

Figure 6-32 ​ Density plot for worldwide birth rates in 2008

Comparison
Often it’s useful to compare multiple distributions rather than just the
mean, median, and mode. These summary statistics are after all descrip-
tors of the big picture. They tell you only part of a story.

For example, I could tell you that the average birth rate for the world in
2008 was 19.98 live births per 1,000 population and 32.87 in 1960, so the
birth rate was about 39 percent lower in 2008 than it was in 1960. That only
tells you what’s going on in the center of the distribution though. Or is it
even the center? Are there only a few countries that had high birth rates
in 1960, bringing up the average? Did differences in birth rate increase or
decrease over the past few decades?

You can make comparisons in lots of ways. You could go entirely analytical
and not use visualization at all. (I spent a year learning about statistical
methods in graduate school, and that was just the tip of the iceberg.) You
could also go the other way and use visualization. Your results won’t be an
exact answer offered by a thorough statistical analysis, but they could be
good enough to make an informed decision about whatever you’re looking

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 214

into. Obviously you’re going to go the visualization route, or I would have
named this book Analyze This.

Multiple Distributions
So far you’ve looked at only single distributions, namely birth rates for
2008. But if you looked at the data file or the data frame in R, you know
that you have annual birth rates all the way back to 1960. If you didn’t look,
then um, you still have annual birth rates all the way back to 1960. Like I
said earlier, the world birth rate has decreased significantly, but how has
the entire distribution changed?

Now take the straightforward route to create a histogram for every year
and lay them out nicely organized as a matrix. It’s a similar idea to the
scatterplot matrix designed at the beginning of this chapter.

Create a Histogram Matrix

The lattice package in R makes it easy to create a whole bunch of histo-
grams with just one line of code, but there’s a small catch. You have to give
it the data in the format that the function wants it. Following is a snippet of
the originally loaded text file.

Country,1960,1961,1962,1963...

Aruba,36.4,35.179,33.863,32.459...

Afghanistan,52.201,52.206,52.208,52.204...

...

There’s a row for each country. The first column is the country name, and
then there’s a column for each year, so there are 30 columns and 234 rows
of data, plus the header. You need the data to be in two columns though,
one for the year and the other for the birth rate. You don’t actually need
country names for this, so the first few rows should look like this.

year,rate

1960,36.4

1961,35.179

1962,33.863

1963,32.459

1964,30.994

1965,29.513

...

C omparis on 215

If you compare the snippet you want to the current snippet, you should
notice that the values in the second snippet match the values for Aruba.
So there’s a row for every birth rate value that is accompanied by the year.
This results in 9,870 rows of data, plus a header.

How do you get the data into the format you want? Remember what you
did with Python in Chapter 2, “Handling Data”? You loaded the CSV file in
Python, and then iterated over each row, printing the values into the for-
mat that you wanted. You can do the same thing here. Start a new file in
your favorite text editor called transform-birth-rate.py. Make sure it’s in
the same directory as birth-rate.csv. Then enter the following script.

import csv

reader = csv.reader(open(‘birth-rate.csv’, ‘r’), delimiter=”,”)

rows_so_far = 0

print ‘year,rate’

for row in reader:

 if rows_so_far == 0:

 header = row

 rows_so_far += 1

 else:

 for i in range(len(row)):

 if i > 0 and row[i]:

 print header[i] + ‘,’ + row[i]

 rows_so_far += 1

This should look familiar, but now break it down. You import the csv
package and then load birth-rate.csv. Then print the header, and iterate
through each row and column so that the script outputs the data in the for-
mat you want. Run the script in your console and save the output in a new
CSV file named birth-rate-yearly.csv.

python transform-birth-rate.py > birth-rate-yearly.csv

Great. Now use histogram() for that matrix; go back to R and load the new
data file with read.csv(). In case you skipped all the data formatting stuff (to
save for later), the new data file is online so that you can load it from a URL.

birth_yearly <-

 read.csv(“http://datasets.flowingdata.com/birth-rate-yearly.csv”)

�

Tip

If you want to
keep all your
coding in R, you
can try using
Hadley Wickham’s
reshape package.
It helps you shift
data frames into
the format you
want.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 216

Now plug the data into histogram() to make a 10 by 5 matrix, with rate cat-
egorized by year. The output is shown in Figure 6-33.

histogram(~ rate | year, data=birth_yearly, layout=c(10,5))

Figure 6-33 ​ Default histogram matrix

Okay, not bad, but you can improve it. First, there is an outlier on the far
right that’s pushing all the bars to the left. Second, an orange bar shifts
left and right according to the year for each cell of the matrix, but it’d be
easier to read if those were actually labels that showed the year number.
Finally, it’s hard to tell because there are no year labels, but the order of
the histograms isn’t actually working. The first year, 1960, is at the bot-
tom left, and 1969 is at the bottom right. The cell above 1960 is the one for
1970. So the order is going bottom to top and left to right. Weird.

C omparis on 217

To find the outlier, use summary() again on birth_yearly.

 year rate

 Min. :1960 Min. : 6.90

 1st Qu.:1973 1st Qu.: 18.06

 Median :1986 Median : 29.61

 Mean :1985 Mean : 29.94

 3rd Qu.:1997 3rd Qu.: 41.91

 Max. :2008 Max. :132.00

The maximum rate is 132. That seems off. No other rates even come close
to 100. What’s going on? It turns out that the rate recorded for Palau in
1999 is 132. This is most likely a typo because the rates for Palau before
and after 1999 are no greater than 20. It’s probably supposed to be 13.2,
but you’d have to look into that deeper. For now, temporarily remove that
mistake.

birth_yearly.new <- birth_yearly[birth_yearly$rate < 132,]

On to the labels for the years. When the values used for labels are stored
as numeric, the lattice function automatically uses the orange bar to
indicate value. If, however, the labels are characters, the function uses
strings, so now do that.

birth_yearly.new$year <- as.character(birth_yearly.new$year)

You still need to update the order, but create the histogram matrix first
and store it in a variable.

h <- histogram(~ rate | year, data=birth_yearly.new, layout=c(10,5))

Now use the update() function to change the order of the histograms.

update(h, index.cond=list(c(41:50, 31:40, 21:30, 11:20, 1:10)))

This basically reverses the order of all the rows. As shown in Figure 6-34,
you get a nicely labeled histogram matrix—and a better sense of the distri-
butions after removing the typo. Plus the histograms are arranged more
logically so that you can read from left to right, top to bottom. Read just
one cell from each row, and move your eyes top to bottom so that you can
see how the distribution has changed by decade.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 218

Figure 6-34 ​ Modified histogram matrix

At this point, the layout is good. If you were to refine the graphic in Illustra-
tor, you could make the labels smaller, change the border and fill colors,
and do some general cleanup, as shown in Figure 6-35. It’s more readable
this way. To make it even clearer, and to complete the story, you can also
add a proper lead-in, include the source, and point out how the distribu-
tion is shifting left toward lower birth rates worldwide. This could be too
complex as a standalone graphic. You’d need to provide a lot of context for
readers to fully appreciate the data.

C omparis on 219

Figure 6-35 ​ Histogram matrix refined in Illustrator

This isn’t the only way to do things. You could create the same matrix with
Processing, Protovis, PHP, or anything that draws bars. There are even
multiple ways to make the same type of matrix within R. For example, I
made a graphic for FlowingData on the changing distribution of television
sizes from 2002 through 2009, as shown in Figure 6-36.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 220

Figure 6-36 ​ Distribution of television size over the years

C omparis on 221

The code looks different from what you just did, but the logic is similar. I
loaded the data, applied some filters for outliers, and then drew a bunch of
histograms. The difference is that I didn’t use histogram() from the lattice
package. Instead, I set the layout with par(), which you use to set universal
parameters in R, and then used hist() to draw each histogram.

Load data

tvs <- read.table(‘http://datasets.flowingdata.com/tv_sizes.txt’,

 sep=”\t”, header=TRUE)

Filter outliers

tvs <- tvs[tvs$size < 80,]

tvs <- tvs[tvs$size > 10,]

Set breaks for histograms

breaks = seq(10, 80, by=5)

Set the layout

par(mfrow=c(4,2))

Draw histograms, one by one

hist(tvs[tvs$year == 2009,]$size, breaks=breaks)

hist(tvs[tvs$year == 2008,]$size, breaks=breaks)

hist(tvs[tvs$year == 2007,]$size, breaks=breaks)

hist(tvs[tvs$year == 2006,]$size, breaks=breaks)

hist(tvs[tvs$year == 2005,]$size, breaks=breaks)

hist(tvs[tvs$year == 2004,]$size, breaks=breaks)

hist(tvs[tvs$year == 2003,]$size, breaks=breaks)

hist(tvs[tvs$year == 2002,]$size, breaks=breaks)

The graphic output of this code is shown in Figure 6-37. It has four rows
and two columns, which was specified in the mfrow argument of par(). For
the final graphic, I ended up putting them all in one column, but the impor-
tant part is that I didn’t have to do a bunch of data entry in Illustrator or
Excel to manually make eight graphs.

Small Multiples

The technique of putting a bunch of small graphs together in a single
graphic is more commonly referred to as small multiples. It encourages
readers to make comparisons across groups and categories, and within
them. Plus, you can fit a lot in one space if your graphic is organized.

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 222

Figure 6-37 ​ Grid layout for histograms

For example, I looked at movie ratings on the site Rotten Tomatoes for
trilogies. In case you’re unfamiliar, Rotten Tomatoes aggregates movie
reviews and marks them as positive and negative. When at least 60 percent
of reviewers say they like a film, it is marked fresh. Otherwise, it’s rotten.

C omparis on 223

I wanted to know how sequels compared to their originals in freshness.
It turns out not very well, as shown in Figure 6-38. The median rating of
finales was 37 percentage points lower than the median of the originals. In
other words, most originals were fresh, and most finales were rotten.

Figure 6-38 ​ How trilogies rate from original to finale

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 224

This was actually just three histograms flipped on their sides. Figure 6-39
shows the original histograms in R. I just gussied them up a bit in Illustrator.

Figure 6-39 ​O riginal trilogy histograms

C omparis on 225

In any case, FlowingData readers understood the graphic for the most
part—they’re a data savvy bunch, naturally. However, the graphic was later
linked from IMDB, also known as the Internet Movie Database. IMDB has a
much more general audience, and judging by the comments after that link-
back, the less data savvy readers had trouble interpreting the distributions.

However, the second part of the graphic, as shown in Figure 6-40, seemed
much easier to understand. It’s a use of small multiples where each bar
represents the rating for a movie. Bars were colored red for rotten and
green for fresh.

Figure 6-40 ​ Small multiples for ratings of trilogies

c h a P t e r 6: V i s ua l i z i n g R e l at i o n s h i p s 226

In case you’re wondering how to do this, it’s just a bunch of bar charts,
so you could change the mfrow parameter like you did before and use the
plot() or polygon() functions. I did this using the Column Graph tool in
Illustrator though, because I happened to already have it open.

I learned a couple of things after posting this graphic. The first and most
important is that aggregates and distributions are not something every-
body deals with on a regular basis, so you need to do your best to explain
the data and take extra care in telling the story. The second is that people
love their movies, and when you say that their favorite movies of all time
are horrible, they sort of take it to heart.

Wrapping Up
Looking for relationships in your data can be challenging at times and
requires more critical thinking than blindly graphing numbers, but it can
also be the most rewarding and informative. It’s how your data, or rather,
how the things that your data represents relate and interact with each
other that’s interesting—that’s what makes for the best stories.

This chapter covered how to look for correlations between multiple vari-
ables, but explained relationships in a more general sense, too. Look at
how everything relates to each other as a whole through distributions.
Look within the distributions for outliers or patterns, and then think about
the context of what you see. Then if you find something interesting, ask
why. Think about the context of the data and possible explanations.

This is the best part about playing with data because you get to explore
what the data is about and maybe dig up something interesting. Then when
you dig enough, you can explain to readers what you find. Remember, not
everyone speaks the language of numbers, so keep it at a human level for
the general audience. Don’t be afraid to turn it up to nerd level though, if
you have the right audience.

Spotting Differences

Sports commentators like to classify a select few athletes as super-
stars or as part of an elite group, while the rest are designated aver-
age or role players. These classifications usually aren’t so much from
sports statistics as they are from watching a lot of games. It’s the
know-it-when-I-see-it mentality. There’s nothing wrong with this.
The commentators (usually) know what they’re talking about and are
always considering the context of the numbers. It always makes me
happy when a group of sports analysts look at performance metrics,
and almost without fail someone will say, “You can’t just look at the
numbers. It’s the intangibles that make so and so great.” That’s statis-
tics right there.

Obviously this doesn’t apply to just sports. Maybe you want to find the
best restaurants in an area or identify loyal customers. Rather than
categorizing units, you could look for someone or something that
stands out from the rest. This chapter looks at how to spot groups
within a population and across multiple criteria, and spot the outliers
using common sense.

7

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s228

What to Look For
It’s easy to compare across a single variable. One house has more square
feet than another house, or one cat weighs more than another cat. Across
two variables, it is a little more difficult, but it’s still doable. The first
house has more square feet, but the second house has more bathrooms.
The first cat weighs more and has short hair, whereas the second cat
weighs less and has long hair.

What if you have one hundred houses or one hundred cats to classify?
What if you have more variables for each house, such as number of bed-
rooms, backyard size, and housing association fees? You end up with the
number of units times the number of variables. Okay, now it is more tricky,
and this is what we focus on.

Perhaps your data has a number of variables, but you want to classify or
group units (for example, people or places) into categories and find the
outliers or standouts. You want to look at each variable for differences,
but you also want to see differences across all variables. Two basketball
players could have completely different scoring averages, but they could
be almost identical in rebounds, steals, and minutes played per game. You
need to find differences but not forget the similarities and relationships,
just like, oh yes, the sports commentators.

Comparing across Multiple Variables
One of the main challenges when dealing with multiple variables is to
determine where to begin. You can look at so many variations and subsets
that it can be overwhelming if you don’t stop to think about what data you
have. Sometimes, it’s best to look at all the data at once, and interesting
points could point you in the next interesting direction.

Getting Warmer
One of the most straightforward ways to visualize a table of data is to show
it all at once. Instead of the numbers though, you can use colors to indicate
values, as shown in Figure 7-1.

C ompari ng across Multip l e Varia bl e s 229

Figure 7-1 ​ Heatmap framework

You end up with a grid the same size of the original data table, but you can
easily find relatively high and low values based on color. Typically, dark
colors mean greater values, and lighter colors represent lower values but
that can easily change based on your application.

You also read the heatmap (or heat matrix) the same way you would a table.
You can read a row left to right to see the values of all variables for a single
unit, or you can see how all the units compare across a single variable.

This layout can still confuse you, especially if you have a large table of
data, but with the right color scheme and some sorting, you can make a
useful graphic.

Create a Heatmap

It’s easy to make heatmaps in R. There’s a heatmap() function that does all
the math work, which leaves you with picking colors best suited for your
data and organizing labels so that they’re still readable, even if you have a
lot of rows and columns. In other words, R sets up the framework, and you
handle the design. That should sound familiar by now.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s230

In this example, take a look at NBA basketball statistics for 2008. You can
download the data as a CSV file at http://datasets.flowingdata.com/ppg2008
.csv. There are 22 columns, the first for player names, and the rest for
stats such as points per game and field goal percentage. You can use read
.csv() to load the data into R. Now look at the first five rows to get a sense
of the data’s structure (Figure 7-2).

bball <-

 read.csv(“http://datasets.flowingdata.com/ppg2008.csv”,

 header=TRUE)

bball[1:5,]

Figure 7-2 ​ Structure of the first five rows of data

Players are currently sorted by points per game, greatest to least, but you
could order players by any column, such as rebounds per game or field
goal percentage, with order().

bball_byfgp <- bball[order(bball$FGP, decreasing=TRUE),]

Now if you look at the first five rows of bball_byfgp, you see the list is led by
Shaquille O’Neal, Dwight Howard, and Pau Gasol instead of Dwyane Wade,
Lebron James, and Kobe Bryant. For this example, reverse the order on
points per game.

bball <- bball[order(bball$PTS, decreasing=FALSE),]

�

Tip

The decreasing

argument in

order() specifies
whether you want
the data to be
sorted in ascend-
ing or descending
order.

The decreasing
argument in
order() specifies
whether you want
the data to be
sorted in ascend-
ing or descending
order.

C ompari ng across Multip l e Varia bl e s 231

As is, the column names match the CSV file’s header. That’s what you
want. But you also want to name the rows by player name instead of row
number, so shift the first column over to row names.

row.names(bball) <- bball$Name

bball <- bball[,2:20]

The first line changes row names to the first column in the data frame.
The second line selects columns 2 through 20 and sets the subset of data
back to bball.

The data also has to be in matrix format rather than a data frame. You’d
get an error if you tried to use a data frame with the heatmap() function.
Generally speaking, a data frame is like a collection of vectors where each
column represents a different metric. Each column can have different for-
mats such as numeric or a string. A matrix on the other hand is typically
used to represent a two-dimensional space and the data type has to be
uniform across all cells.

bball_matrix <- data.matrix(bball)

The data is ordered how you want it and formatted how you need it to be,
so you can plug it into heatmap() to reap the rewards. By setting the scale
argument to “column,” you tell R to use the minimum and maximum of
each column to determine color gradients instead of the minimum and
maximum of the entire matrix.

bball_heatmap <- heatmap(bball_matrix, Rowv=NA,

 Colv=NA, col = cm.colors(256), scale=”column”, margins=c(5,10))

Your result should resemble Figure 7-3. Using cm.colors(), you specified a
color range from cyan to magenta. The function creates a vector of hexa-
decimal colors with a cyan-to-magenta range by default with n shades in
between (in this case, 256). So notice the third column, which is for points
per game, starts at magenta, indicating the highest values for Dwyane
Wade and Lebron James, and then shifts toward a darker cyan hue to the
bottom for Allen Iverson and Nate Robinson. You can also quickly find
other magenta spots representing leading rebounder Dwight Howard or
assist leader Chris Paul.

�

Tip

A lot of visual-
ization involves
gathering and
preparing data.
Rarely, do you get
data exactly how
you need it, so you
should expect to
do some data
munging before
the visuals.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s232

Figure 7-3  Default heatmap ordered by points per game

Maybe you want a different color scheme. Just change the col argument,
which is cm.colors(256) in the line of code you just executed. Type ?cm.colors
for help on what colors R offers. For example, you could use more heat-
looking colors, as shown in Figure 7-4.

bball_heatmap <- heatmap(bball_matrix,

 Rowv=NA, Colv=NA, col = heat.colors(256), scale=”column”,

 margins=c(5,10))

C ompari ng across Multip l e Varia bl e s 233

Figure 7-4 ​ Heatmap with a red-yellow color scale

If you typed cm.colors(10) in the R console, you’d get an array of ten colors
that range from cyan to magenta. Then heatmap() automatically chooses
the color that corresponds to each value based on a linear scale.

[1] “#80FFFFFF” “#99FFFFFF” “#B3FFFFFF” “#CCFFFFFF” “#E6FFFFFF”

[6] “#FFE6FFFF” “#FFCCFFFF” “#FFB3FFFF” “#FF99FFFF” “#FF80FFFF”

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s234

This is great, because you can easily create your own color scale. For
example, you could go to 0to255.com and pick out the base color and go
from there. Figure 7-5 shows a gradient with a red base. You can pick
a handful of colors, from light to dark, and then easily plug them into
heatmap(), as shown in Figure 7-6. Instead of using R to create a vector
of colors, you define your own in the red_colors variable.

red_colors <- c(“#ffd3cd”, “#ffc4bc”, “#ffb5ab”,

 “#ffa69a”, “#ff9789”, “#ff8978”, “#ff7a67”, “#ff6b56”,

 “#ff5c45”, “#ff4d34”)

bball_heatmap <- heatmap(bball_matrix, Rowv=NA,

 Colv=NA, col = red_colors, scale=”column”, margins=c(5,10))

Figure 7-5 ​ Red gradient from 0to255.com

�Choose your
colors wisely
because they also
set the tone for
the context of your
story. For example,
if you deal with a
somber topic, it’s
probably better to
stay with more
neutral, muted
tones, whereas
you can use
vibrant colors for a
more uplifting or
casual topic.

Tip

C ompari ng across Multip l e Varia bl e s 235

Figure 7-6 ​ Heatmap using custom red color scale

If you don’t want to pick your own colors, you can also use the
RColorBrewer package. The package is not installed by default, so you
need to download and install it via the Package Installer if you haven’t
already. ColorBrewer was designed by cartographer Cynthia Brewer and
was originally intended for maps, but it can help you create data graphics
in general. You can choose from a variety of options, such as a sequen-
tial or divergent color palette and number of shades. For the purposes
of this example, go with a simple blue palette. Enter ?brewer.pal in the
R console for more options—it’s fun to play with. Assuming you installed
RColorBrewer, enter the following for a heatmap using a blue palette with
nine shades. The result is shown in Figure 7-7.

library(RColorBrewer)

bball_heatmap <- heatmap(bball_matrix, Rowv=NA,

 Colv=NA, col = brewer.pal(9, “Blues”),

 scale=”column”, margins=c(5,10))

P Visit the
interactive ver-
sion of Color-
brewer at http://­
colorbrewer2.com.
You can select
options from
drop-down menus
to see how color
schemes look in a
sample map.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s236

Figure 7-7 ​ Heatmap using RColorBrewer for color palette

Check out Figure 7-7, which you can bring into Illustrator to spruce up.
The graphic doesn’t need a ton of edits, but you can make the labels more
readable and soften the colors so that the graphic is easier to scan.

Addressing the former, it’d be better if the labels were the full descrip-
tions. As a basketball fan, I know what each abbreviation stands for, but
someone not so familiar with the sport would be confused. As for the lat-
ter, you can tone down the contrast by using transparency, available in the
Color Window in Illustrator. Cell borders can also provide more definition
to each cell so that the graphic is easier to scan left to right and top to bot-
tom. Figure 7-8 shows the finished graphic.

C ompari ng across Multip l e Varia bl e s 237

Figure 7-8 ​ Heatmap showing NBA per game performance for the top 50 scorers during
the 2008–2009 season

P Mike Bostock
ported this ex-
ample to Protovis,
which you can
find in the Protovis
examples section.
The aesthetic is
the same, but it
has the added
bonus of tooltips
as you mouse over
each cell.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s238

See It in His Face
The good thing about a heatmap is that it enables you to see all your data
at once; however, the focus is on individual points. You can easily spot
highs and lows for points or rebounds per game, but it’s more challenging
to compare one player to another.

Often you want to see each unit as a whole instead of split up by several
metrics. Chernoff Faces is one way to do this; however the method isn’t an
exact one, and it’s possible a general audience might become confused.
That said, Chernoff Faces can be useful from time to time, it’s good data
nerd fun, which makes it totally worth it.

The point of Chernoff Faces is to display multiple variables at once by posi-
tioning parts of the human face, such as ears, hair, eyes, and nose, based
on numbers in a dataset (Figure 7-9). The assumption is that you can read
people’s faces easily in real life, so you should recognize small differences
when they represent data. That’s a big assumption, but roll with it.

As you see in the following example, larger values stand out in the form of
big hair or big eyes, whereas smaller values tend to shrink facial features.
In addition to size, you can also adjust features such as the curve of the
lips or shape of the face.

Figure 7-9 ​ Chernoff Faces framework

C ompari ng across Multip l e Varia bl e s 239

Create Chernoff Faces

Go back to the basketball data, which represents the top 50 scorers in
the NBA, during the 2008–2009 season. There will be one face per player.
Don’t worry—you don’t have to create each face manually. The aplpack in R
provides a faces() function to help get you to where you want.

If you haven’t already, go ahead and install aplpack with install.packages()
or via the Package Installer. The package name stands for “another plot-
ting package” in case you were wondering, and it was designed by Hans
Peter Wolf. When installed, the package is usually automatically loaded,
but if not, you should do that, too.

library(aplpack)

You should have also already loaded the basketball data while creating a
heatmap. If not, again use read.csv() to load the data directly from a URL.

bball <- read.csv(“http://datasets.flowingdata.com/ppg2008.csv”,

header=TRUE)

After you load the package and data, it’s straightforward to make Chernoff
Faces with the faces() function, as shown in Figure 7-10.

faces(bball[,2:16], ncolors=0)

Your dataset has 20 variables, plus player names; however, the faces()
function offered by the aplpack enables only a maximum of 15 variables,
because there are only so many facial features you can change. This is why
you subset the data on columns 2 to 16.

What does each face represent? The faces() function changes features in
the following order, matching the order of the data columns.

1.	 Height of face

2.	 Width of face

3.	 Shape of face

4.	 Height of mouth

5.	 Width of mouth

6.	 Curve of smile

7.	 Height of eyes

8.	 Width of eyes

9.	 Height of hair

10.	Width of hair

11.	Styling of hair

12.	Height of nose

13.	Width of nose

14.	Width of ears

15.	Height of ears

�
The newest
version of the
aplpack lets you
add color with the
faces() function.
In this example,
you set ncolors to
0 to use only black
and white. See
?faces to see how
you can use color
vectors in the
same way you
used them with
the previous
heatmap example.

note

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s240

Figure 7-10  Default Chernoff Faces

So for example, the height of a face represents the number of games
played, and the height of a mouth represents field goals made per game.
This is kind of useless as it is because you don’t have any names to the
faces, but you can see that the first few have more well-rounded gameplay
than the others, whereas player 7, for instance, has relatively wide hair,
which corresponds to three-pointers made.

Use the labels argument in faces() to add names to the faces, as shown in
Figure 7-11.

faces(bball[,2:16], labels=bball$Name)

That’s better. Now you can see which face corresponds to which player.
To identify the point guards, you can start with say, Chris Paul, and look
for similar faces such as the one for Devin Harris or Deron Williams.
Chauncey Billups, in the bottom-right corner is also a point guard, but the

�

Tip

When you have a
lot of individuals, it
can be useful to
cluster by cat­
egory so that the
faces are easier
to scan. For this
example, you
could separate
faces by position:
guards, forwards,
and centers.

C ompari ng across Multip l e Varia bl e s 241

face looks different than the others. The hair is higher and mouth width is
narrow, which corresponds to high free throw percentage and field goal
attempts, respectively.

To make the graphic more readable, you can add some more spacing
between rows, and at the least, provide a description of what feature pro-
vides what, as shown in Figure 7-12. Normally, I’d use a graphical legend,
but we used every facial feature, so it’s a challenge to provide that many
pointers on a single face.

Again, the usefulness of Chernoff Faces can vary by dataset and audience,
so you can decide whether you want to use the method. One thing though,
is that people who aren’t familiar with Chernoff Faces, tend to take the
faces somewhat literally, as if the face that represents Shaquille O’Neal is
actually supposed to look like the player. Most of you know that O’Neal is
one of the physically biggest players of all time.

Figure 7-11 ​ Chernoff Faces with names for players

�White space in
your graphics can
make them more
readable, espe-
cially when there
is a lot to look at
and evaluate.

Tip

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s242

Figure 7-12 ​ Chernoff Faces for top NBA scorers during the 2008–2009 season

Along the same lines, I designed a graphic for crime in the United States
(Figure 7-13) using Chernoff Faces, and someone actually commented that
it was racist because of how the face looked for states with high crime

C ompari ng across Multip l e Varia bl e s 243

rates. That never crossed my mind because changing a facial feature was
like changing the length of a bar on a graph for me, but hey, it’s something
to think about.

Figure 7-13  Crime in the United States represented by a face for each state

�Put yourself in the
mind of a reader
as you design your
graphics. They
won’t always be
as familiar with
visualization
methods as you
are or know what
you know about
the data, so it’s
up to you, the
storyteller, to
explain.

Tip

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s244

Starry Night
Instead of using faces to show multivariate data, you can use the same
idea but abstract on it by using a different shape. Instead of changing facial
features, you can modify the shape to match data values. This is the idea
for star charts, also known as radar or spider charts.

As shown in Figure 7-14, you can draw several axes, one for each variable,
starting from the middle and equally spaced in a circle. The center is the
minimum value for each variable, and the ends represent the maximums.
So if you draw a chart for a single unit, start at a variable and draw a con-
necting line to the corresponding spot on the next axis. Then you end up
with something that looks like a star (or a radar or spider web).

Figure 7-14 ​ Star chart framework

You can represent several units on a single chart, but it’ll become useless
in a hurry, which makes for a poorly told story. So stick to separate star
charts and compare.

C ompari ng across Multip l e Varia bl e s 245

Create Star Charts

Now use the same crime data used for Figure 7-13 to see if it makes any
difference to use these star charts. First things first. Load the data into R.

crime <- read.csv(“http://datasets.flowingdata.com/

crimeRatesByState-formatted.csv”)

Now it’s as straightforward to make star charts as it was to make Chernoff
Faces. Use the stars() function, which comes packaged with base R.

stars(crime)

The default charts are shown in Figure 7-15. Hopefully, these won’t offend
anyone. Of course, you still need state labels, but you also need a key to
tell you which dimension is which. A certain order is followed, like with
faces(), but you don’t know where the first variable starts. So take care
of both in one swoop. Notice that you can change to first column to row
names just like you did with the heatmap. You can also set flip.labels to
FALSE, because you don’t want the labels to alternate heights. Figure 7-16
shows the results.

row.names(crime) <- crime$state

crime <- crime[,2:7]

stars(crime, flip.labels=FALSE, key.loc = c(15, 1.5))

It’s relatively easy to spot the differences and similarities now. In the Cher-
noff version, the District of Columbia looked like a wild-eyed clown com-
pared to all the other states, but with the star version, you see that yes, it
does have high rates of crime in some categories, but relatively lower rates
of forcible rape and burglary. It’s also easy to find the states with relatively
low crime rates such as New Hampshire and Rhode Island. Then there are
states such as North Carolina that are high in just a single category.

For this dataset, I’m satisfied with this format, but there are two variations
that you might want to try with your own data. The first restricts all data to
the top half of the circle, as shown in Figure 7-17.

stars(crime, flip.labels=FALSE, key.loc = c(15, 1.5), full=FALSE)

The second variation uses the length of the segments instead of placement
of points, as shown in Figure 7-18. These are actually Nightingale charts
(also known as polar area diagrams) more than they are star charts, but
there you go. If you do go with this option, you might want to try a different
color scheme other than this crazy default one.

stars(crime, flip.labels=FALSE, key.loc = c(15, 1.5), draw.segments=TRUE)

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s246

Figure 7-15 ​ Default star charts showing crime by state

C ompari ng across Multip l e Varia bl e s 247

Figure 7-16 ​ Star charts with labels and key

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s248

Figure 7-17 ​ Star charts restricted to top half of circle

C ompari ng across Multip l e Varia bl e s 249

Figure 7-18 ​ Crime displayed as Nightingale charts

Like I said though, I’m good with the original format in Figure 7-16, so you
can take that into Illustrator to do some cleanup. It doesn’t need a whole lot
of modification. More white space between the rows could make the labels
less ambiguous, and you can place the key on top so that readers know
what they’re getting into (Figure 7-19). Other than that, it’s good to go.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s250

Figure 7-19 ​ Series of star charts showing crime by state

C ompari ng across Multip l e Varia bl e s 251

Running in Parallel
Although star charts and Chernoff Faces can make it easier to spot units
that are different from the rest of the pack, it’s a challenge to identify
groups or how variables could be related. Parallel coordinates, which
were invented in 1885 by Maurice d’Ocagne, can help with this.

As shown in Figure 7-20, you place multiple axes parallel to each other.
The top of each axis represents a variable’s maximum, and the bottom
represents the minimum. For each unit, a line is drawn from left to right,
moving up and down, depending on the unit’s values.

Figure 7-20 ​ Parallel coordinates framework

For example, imagine you made a plot using the basketball data from ear-
lier in the chapter. For the sake of simplicity, you only plot points, rebound-
ing, and fouls, in that order. Now imagine a player who was a top scorer, a

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s252

weak rebounder, and fouled a lot. A line in the parallel coordinates plot for
that player would start high, go low, and then come back up again.

When you plot more units, this method helps to spot groups and tenden-
cies. In the following example, you can use parallel coordinates on data
from the National Center for Education Statistics.

Create a Parallel Coordinates Plot

You have several interactive options for parallel coordinates. You can
build it in Protovis if you want to make a custom graphic, or you can plug
your data into an exploratory tool such as GGobi. These implementations
enable you to filter and highlight the data points you’re interested in; how-
ever, I still like to go with static parallel coordinates plots, namely because
you can compare different filters all at once. With interactive versions, you
have only one plot, and it’s tough to make sense of what you’re looking at
when you have a bunch of highlighting all in one place.

You know the first step. Before doing any visualizing, you need data. Load
our education data into R with read.csv().

education <- read.csv(“http://datasets.flowingdata.com/education.csv”,

header=TRUE)

education[1:10,]

There are seven columns. The first is for state name, including “United
States” for the national average. The next three are average reading,
mathematics, and writing SAT scores. The fifth column is percentage
of graduates who actually take the SAT, and the last two columns are
pupil-to-staff ratio and high school dropout rate. What you’re interested
in is whether any of these variables are related and if there are any clear
groupings. For example, do states with high dropout rates tend to have low
SAT scores on average?

The base distribution of R doesn’t supply a straightforward way to use par-
allel coordinates, but the lattice package does, so use that. Go ahead and
load the package (or install if you haven’t already).

library(lattice)

Great, now this will be super easy. The lattice package provides a
parallel() function that you can quickly use.

parallel(education)

P Download
GGobi for free at
http://ggobi.org.

C ompari ng across Multip l e Varia bl e s 253

This produces the plot shown in Figure 7-21. Okay, that’s quite useless,
actually. There are a bunch of lines all over the place, and the variables go
top to bottom instead of left to right. It looks like rainbow spaghetti at this
point.

Figure 7-21 ​ Default parallel coordinates plot with the lattice package

How can you modify this parallel coordinates plot so that you can actually
get some information out of it? For starters, flip it on its side. This is more
of a personal preference than it is a rule, but parallel coordinates left to
right makes more sense, as shown in Figure 7-22.

parallel(education, horizontal.axis=FALSE)

You also don’t need to include the state column, because for one, it’s cat-
egorical, and second, every state has a different name. Now change the

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s254

color of the lines to black—I’m all for color, but it’s too much as-is. Execute
the line of code below and you get Figure 7-23.

parallel(education[,2:7], horizontal.axis=FALSE, col=”#000000”)

Figure 7-22 ​ Horizontal parallel coordinates

Figure 7-23  Parallel coordinates, simplified

C ompari ng across Multip l e Varia bl e s 255

That’s a little better. The lines from reading, to math, to writing seldom
criss-cross and almost run parallel. This makes sense that states with
high reading scores also have math and writing scores. Similarly, states
with low reading scores tend to have low math and writing scores.

Then something interesting happens as you go from SAT scores to per-
centage of graduates who take the SAT. It looks like the states with higher
SAT score averages tend to have a lower percentage of graduates who
take the test. It’s the opposite for states with lower SAT averages. My spe-
cialty isn’t in education, but my best bet is that in some states everyone
takes the SAT, whereas in others people don’t take the test if they’re not
planning to go to college. Thus, the average comes down when you require
people who don’t care about the results to take the test.

You can make this point more obvious by offering some contrasting col-
ors. The parallel() function gives you full control over the colors with the
col argument. Previously, you used only a single color (#000000), but you
can also pass it an array of colors, a color value for each row of data. Now
make the states in the 50th percentile of reading scores black and the bot-
tom half gray. Use summary() to find the medians in the education data.
Simply enter summary(education) in the console. This actually gives you
summary stats for all columns, but it’s a quick way to find that the median
for reading is 523.

 state reading math writing

Alabama : 1 Min. :466.0 Min. :451.0 Min. :455.0

Alaska : 1 1st Qu.:497.8 1st Qu.:505.8 1st Qu.:490.0

Arizona : 1 Median :523.0 Median :525.5 Median :510.0

Arkansas : 1 Mean :533.8 Mean :538.4 Mean :520.8

California: 1 3rd Qu.:571.2 3rd Qu.:571.2 3rd Qu.:557.5

Colorado : 1 Max. :610.0 Max. :615.0 Max. :588.0

(Other) :46

percent_graduates_sat pupil_staff_ratio dropout_rate

Min. : 3.00 Min. : 4.900 Min. :-1.000

1st Qu.: 6.75 1st Qu.: 6.800 1st Qu.: 2.950

Median :34.00 Median : 7.400 Median : 3.950

Mean :37.35 Mean : 7.729 Mean : 4.079

3rd Qu.:66.25 3rd Qu.: 8.150 3rd Qu.: 5.300

Max. :90.00 Max. :12.100 Max. : 7.600

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s256

Now iterate through each row of the data; check if it’s above or below and
specify the colors accordingly. The c() directive creates an empty vector,
which you add to in each iteration.

reading_colors <- c()

for (i in 1:length(education$state)) {

 if (education$reading[i] > 523) {

 col <- “#000000”	

 } else {

 col <- “#cccccc”	

 }

 reading_colors <- c(reading_colors, col)

}

Then pass the reading_colors array into parallel instead of the lone
“#000000”. This gives you Figure 7-24, and it’s much easier to see the big
move from high to low.

parallel(education[,2:7], horizontal.axis=FALSE, col=reading_colors)

Figure 7-24  States with top reading scores highlighted

C ompari ng across Multip l e Varia bl e s 257

What about dropout rates? What if you do the same thing with drop-
out rates that you just did with reading scores, except you use the third
quartile instead of the median? The quartile is 5.3 percent. Again, you iter-
ate over each row of data, but this time check the dropout rate instead of
reading score.

dropout_colors <- c()

for (i in 1:length(education$state)) {

 if (education$dropout_rate[i] > 5.3) {

 col <- “#000000”	

 } else {

 col <- “#cccccc”	

 }

 dropout_colors <- c(dropout_colors, col)

}

parallel(education[,2:7], horizontal.axis=FALSE, col=dropout_colors)

Figure 7-25 shows what you get, and it’s not nearly as compelling as the
previous graphic. Visually speaking, there aren’t any obvious groupings
across all of the variables.

Figure 7-25 ​ States with highest dropout rates highlighted

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s258

You can do more exploring on your own. Now go back to Figure 7-24 and
tighten it up. Better looking labels that are more obvious would be good.
Maybe add some color instead of all grayscale? How about a short blurb
about why the top 50 percent of states are highlighted? What do you get?
Figure 7-26.

Figure 7-26 ​ Standalone parallel coordinates plot on SAT scores

Reducing Dimensions
When you use Chernoff Faces or parallel coordinates, your main goal is to
reduce. You want to find groups within the dataset or population. The chal-
lenge is that you don’t always know where to start looking in the faces or

R educing Dimen sion s 259

the connecting lines, so it’d be nice if you could cluster objects, based on
several criteria. This is one of the goals of multidimensional scaling (MDS).
Take everything into account, and then place units that are more similar
closer together on a plot.

Entire books are written on this topic, so explanations can get technical,
but for the sake of simplicity, I’ll keep it at a high level and leave the math
for another day. That said, MDS is one of the first concepts I learned in
graduate school, and it is worth learning the mechanics behind it, if you’re
into that sort of thing.

Imagine that you’re in an empty, square-shaped room and there are two
other people there. It’s your job to tell those people where to stand in the
room, based on their height. The more similar their height, the closer they
should stand, and the more different their height, the farther away they
should stand. One is really short. The other is really tall. Where should
they go? The two people should stand at opposite corners, because they
are complete opposites.

Now a third person comes in, and he’s medium height. Sticking with the
arrangement scheme, the new person should stand in the center of the
room, right in between the first two. He’s equally different from the tall
and the short, so he’s equal distance from each. At the same time, the tall
and short people are still maximum distance from each other.

Okay, now introduce another variable: weight. You know the height and
weight of all three people. The short and medium height people are actu-
ally the exact same weight whereas the tall person is, say, a third heavier.
How can you, based on height and weight, place the three people in the
room? Well, if you keep the first two people (short and tall) in their oppo-
site positions, the third person (medium height) would need to move closer
to the shorter person, because their weights are the same.

Do you get what is occurring? The more similar two people are, the
closer they should stand to each other. In this simple case, you have only
three people and two variables, so it’s easy to work this out manually,
but imagine you have 50 people, and you have to place them in the room
based on say, five criteria. It’s trickier. And that’s what multidimensional
scaling is for.

P For more
details on the
method, look up
multidimensional
scaling or princi-
pal components
analysis.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s260

Make Use of Multidimensional Scaling
Multidimensional scaling is much easier to understand with a concrete
example, so jump right in. Come back to the education data, so if you
haven’t loaded it in R already, go ahead and do that first.

education <-

 read.csv(“http://datasets.flowingdata.com/education.csv”,

 header=TRUE)

Remember, there is a row for each state, which includes the District of
Columbia and more rows for the United States averages. There are six
variables for each state: reading, math, and writing SAT scores; percent-
age of graduates who took the SAT; pupil-to-staff ratio; and dropout rate.

It’s just like the room metaphor, but instead of a square room, it’s a square
plot; instead of people, there are states; and instead of height and weight,
you have education-related metrics. The goal is the same. You want to
place the states on an x-y plot, so that similar states are closer together.

First step: Figure out how far each state should be from every other state. Use
the dist() function, which does just that. You use only columns 2 through 7
because the first column is state names, and you know all those are different.

ed.dis <- dist(education[,2:7])

If you type ed.dis in the console, you see a series of matrices. Each cell
represents how far one state should be from another (by Euclidean pixel
distance). For example, the value in the second row, second column over
is the distance Alabama should be from Alaska. The units aren’t so impor-
tant at this point. Rather it’s the relative differences that matter.

How do you plot this 51 by 51 matrix on an x-y plot? You can’t yet, until you
have an x-y coordinate for each state. That’s what cmdscale() is for. It takes
a distance matrix as input and returns a set of points so that the differ-
ences between those points are about the same as specified in the matrix.

ed.mds <- cmdscale(ed.dis)

Type ed.mds in the console, and you see you now have x-y coordinates for
each row of data. Store these in the variables x and y, and toss them into
plot() to see what it looks like (Figure 7-27).

x <- ed.mds[,1]

y <- ed.mds[,2]

plot(x,y)

R educing Dimen sion s 261

Figure 7-27 ​ Dot plot showing results of multidimensional scaling

Not bad. Each dot represents a state. One problem, though: You don’t
know what state is which. You need labels, so like before use text() to put
state names in place of the dots, as shown in Figure 7-28.

plot(x, y, type=”n”)

text(x, y, labels=education$state)

That’s kind of cool. You see a couple of clusters emerge, with one on the
left and the other on the right. United States is on the bottom of the right
cluster, toward the middle, which seems about right. At this point, it’s up
to you to figure what the clusters mean, but it’s a good jumping off point in
your data exploration escapades.

You could, for example, color the states by dropout_colors like you did with
the parallel coordinates, as shown in Figure 7-29. It doesn’t tell you much,
but it does confirm what you saw in Figure 7-25.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s262

Figure 7-28 ​U sing state names instead of dots to see where each state was placed

Figure 7-29 ​ States colored by dropout rates

R educing Dimen sion s 263

What about states colored by reading scores? Yeah, you can do that, too,
as shown in Figure 7-30. Ah, it looks like there’s a clear pattern there.
High scores are on the left and lower scores are on the right? What makes
Washington different? Look into that—you can tell me later.

Figure 7-30 ​ States colored by reading scores

If you want to be fancy, you can try something called model-based clus-
tering. I’m not going to get into the details of it. I’ll just show you how to
do it, and you can take my word for it that we’re not doing any magic here.
There’s actual math involved. Basically, use the mclust package to identify
clusters in your MDS plot. Install mclust if you haven’t already. Now run the
following code for the plots in Figure 7-31.

library(mclust)

ed.mclust <- Mclust(ed.mds)

plot(ed.mclust, data=ed.mds)

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s264

Figure 7-31 ​ Results of model-based clustering

That first plot on the top left shows the results of running an algorithm to
find the ideal number of clusters in the data. The remaining three plots
show the clusters. Pretty awesome. You get the two clusters, now more
well defined, showing high and low states.

This is usually when I tell you to bring your PDF files into Illustrator and
apply some touchups, but I’m not so sure I’d ever publish these for a gen-
eral audience. It’s too abstract for the nontechnically minded to figure out
what’s going on. They’re good for data exploration; however, if you were so
inclined, all standard design principles apply. Figure out what you need to
tell a clear story, and strip out the rest.

Se archi ng for Ou t l iers 265

Searching for Outliers
Rather than looking for how units of data belong in certain groups, you
should also be interested in how they don’t belong in groups. That is, there
will often be data points that stand out from the rest, which are called, you
guessed it, outliers. These are data points that are different from the rest
of the population. Sometimes they could be the most interesting part of
your story, or they could just be boring typos with a missing zero. Either
way, you need to check them out to see what’s going on. You don’t want
to make a giant graphic on the premise of an outlier, only to find out later
from a diligent reader that your hard work makes no sense.

Graphic types have been designed specifically to highlight outliers, but in
my experience, nothing beats basic plots and common sense. Learn about
the context of your data, do your homework, and ask experts about the data
when you’re not sure about something. Once you find the outliers, you can
use the same graphical techniques that we’ve used so far to highlight them
for readers: Use varied colors, provide pointers, or use thicker borders.

Now look at a simple example. Figure 7-32 shows a time series plot that
shows weather data scraped from Weather Underground (like you did in
Chapter 2, “Handling Data”), from 1980 to 2005. There are seasonal cycles
like you’d expect, but what’s going on in the middle? It seems to be unusu-
ally smooth, whereas the rest of the data has some noise. This is nothing
to go crazy over, but if you happen to run weather models on this data, you
might want to know what has been estimated and what’s real data.

Figure 7-32 ​E stimated weather data from Weather Underground

Similarly, looking at the star charts you made that show crime, you can
see the District of Columbia stands out. You could have seen this just as
easily with a basic bar chart, as shown in Figure 7-33. Is it fair to compare
Washington, DC to the states, considering it has more of a city makeup?
You be the judge.

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s266

Figure 7-33 ​ Murders by Firearm in the United States

Se archi ng for Ou t l iers 267

How about the subscriber counts from Chapter 3, “Choosing Tools to Visu-
alize Data,” shown in Figure 7-34? There’s that big dip in the middle where
it looks like more than half of FlowingData’s readership is lost.

You can also look at the distribution as a whole via a histogram, as shown
in Figure 7-35. All counts are sitting on the right, except for a couple all
the way to the left with nothing in the middle.

Figure 7-34 ​ FlowingData subscriber counts over time

Figure 7-35 ​ Histogram showing distribution of subscriber counts

c h a P t e r 7: S p o t t i n g D i f f e r e n c e s268

More concretely, you can use a boxplot, which shows quartiles in a distri-
bution. Boxplots generated in R with the boxplot() function can automati-
cally highlight points that are more than 1.5 times more or less than the
upper and lower quartiles, respectively (Figure 7-36).

Figure 7-36 ​B oxplot showing
distribution of subscriber counts

If I had a small number of subscribers in the single digits, then sure, such
a big percentage-wise decrease could be possible, but it’s unlikely that
I said something so offensive to compel tens of thousands of readers to
defect (and then come back a couple of days later). It’s much more likely
that Feedburner, the feed delivery service I use, made a reporting error.

These outliers in these datasets are obvious because you know a little
bit about the data. It could be less obvious if you use datasets you’re not
familiar with. When that happens, it can be helpful to go directly to the
source and just ask whoever is in charge. The person or group curating
the data is usually happy that you’re making use of it and will offer some

P A quartile is one
of three points in
a dataset, which
marks quarter
spots. The middle
quartile is the me-
dian or the halfway
point; the upper
quartile marks the
spot where 25 per-
cent of the data
is greater than
that value; and
the lower quartile
marks the bottom
25 percent.

W rappi ng Up 269

quick advice. If you can’t find out any more details, you can at least say you
tried, and make a note of the ambiguity in your explanation of your graphic.

Wrapping Up
For beginners, one of the hardest parts to design data graphics is to fig-
ure out where to start. You have all this data in front of you without a clue
about what it is or what to expect. Usually, you should start with a question
about the data and work off of that question, but what if you don’t know
what to ask? The methods described in this chapter can help a lot with
this. They help you see all the data at once, which makes it easier to figure
out what part of the data to explore next.

However, don’t stop here. Use these as jumping off points to narrow down
to spots that look interesting. This, in addition to what previous chapters
cover should be enough to help you dig deep into your data, no matter what
type of data you deal with. Well, except for one. The next chapter covers
one more data type: spatial data. Get ready to make some maps.

Visualizing Spatial
Relationships

Maps are a subcategory of visualization that have the added benefit of
being incredibly intuitive. Even as a kid, I could read them. I remember
sitting in the passenger seat of my dad’s car and sounding off direc-
tions as I read the fantastically big unfolded map laid out in front of
me. An Australian lady with a robotic yet calming voice spits out direc-
tions from a small box on the dash nowadays.

In any case, maps are a great way to understand your data. They are
scaled down versions of the physical world, and they’re everywhere. In
this chapter you dive into several spatial datasets, looking for patterns
over space and time. You create some basic maps in R and then jump
to more advanced mapping with Python and SVG. Finally, you round it
up with interactive and animated maps in ActionScript and Flash.

8

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s272

What to Look For
You read maps much the same way that you read statistical graphics.
When you look at specific locations on a map, you still look for cluster-
ing in specific regions or for example, compare one region to the rest of
a country. The difference is that instead of x- and y-coordinates, you deal
with latitude and longitude. The coordinates on a map actually relate to
each other in the same way that one city relates to another. Point A and
Point B are a specific number of miles away, and it takes an estimated
time to get there. In contrast, the distance on a dot plot is abstract and
(usually) has no units.

This difference brings with it a lot of subtleties to maps and cartography.
There’s a reason The New York Times has a group of people in its graphics
department who exclusively design maps. You need to make sure all your
locations are placed correctly, colors make sense, labels don’t obscure
locations, and that the right projection is used.

This chapter covers only a handful of the basics. These can actually take
you pretty far in terms of finding stories in your data, but keep in mind
there’s a whole other level of awesome that you can strive for.

Things can get especially interesting when you introduce time. One map
represents a slice in time, but you can represent multiple slices in time
with several maps. You can also animate changes to, say, watch growth (or
decline) of a business across a geographic region. Bursts in specific areas
become obvious, and if the map is interactive, readers can easily focus
in on their area to see how things have changed. You don’t get the same
effect with bar graphs or dot plots, but with maps, the data can become
instantly personal.

Specific Locations
A list of locations is the easiest type of spatial data you’ll come across. You
have the latitude and longitude for a bunch places, and you want to map
them. Maybe you want to show where events, such as crime, occurred, or
you want to find areas where points are clustered. This is straightforward
to do, and there are a lot of ways to do it.

Spe cifi c Lo c atio n s 273

On the web, the most common way to map points is via Google or Microsoft
Maps. Using their mapping APIs, you can have an interactive map that you
can zoom and pan in no time with just a few lines of JavaScript. Tons of
tutorials and excellent documentation are online on how to make use of
these APIs, so I’ll leave that to you.

However, there is a downside. You can only customize the maps so much,
and in the end you’ll almost always end up with something that still looks
like a Google or Microsoft map. I’m not saying they’re ugly, but when you’re
developing an application or designing a graphic that fits into a publication,
it’s often more fitting to have a map that matches your design scheme.
There are sometimes ways to get around these barriers, but it’s not worth
the effort if you can just do the same thing but better, with a different tool.

Find Latitude and Longitude
Before you do any mapping, consider the available data and the data that
you actually need. If you don’t have the data you need, then there’s nothing
to visualize, right? In most practical applications, you need latitude and
longitude to map points, and most datasets don’t come like that. Instead,
you most likely will have a list of addresses.

As much as you might want to, you can’t just plug in street names and postal
codes and expect a pretty map. You have to get latitude and longitude first,
and for that, turn to geocoding. Basically, you take an address, give it to a
service, the service queries its database for matching addresses, and then
you get latitude and longitude for where the service thinks your address is
located in the world.

As for which service to use, well, there are many. If you have only a few
locations to geocode, it’s easy to just go to a website and manually enter
them. Geocoder.us is a good free option for that. If you don’t need your
locations to be exact, you can try Pierre Gorissen’s Google Maps Latitude
Longitude Popup. It’s a simple Google Maps interface that spits out latitude
and longitude for anywhere you click on the map.

If, however, you have a lot of locations to geocode, then you should do it
programmatically. You don’t need to waste your time copying and pasting.
Google, Yahoo!, Geocoder.us, and Mediawiki all provide APIs for gecoding;
and Geopy, a geocoding toolbox for Python, wraps them all up into one
package.

�
Google and
Microsoft provide
super straightfor-
ward tutorials that
start with their
mapping APIs, so
be sure to check
those out if you’re
interested in taking
advantage of some
basic mapping
functionality.

note

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s274

Useful Geocoding Tools

Geocoder.us, aa http://geocoder.us—Provides a straightforward
interface to copy and paste location to get latitude and longitude.
Also provides an API.
Latitude Longitude Popup, aa www.gorissen.info/Pierre/maps/—Google
Maps’ mashup. Click a location on the map, and it gives you latitude
and longitude.
Geopy, aa http://code.google.com/p/geopy/—Geocoding toolbox for
Python. Wraps up multiple geocoding APIs into a single package.

Visit the Geopy project page for instructions on how to install the package.
There are also lots of straightforward examples on how to start. The fol-
lowing example assumes you have already installed the package on your
computer.

After you install Geopy, download location data at http://book.flowingdata
.com/ch08/geocode/costcos-limited.csv. This is a CSV file that contains the
address of every Costco warehouse in the United States, but it doesn’t
have latitude or longitude coordinates. That’s up to you.

Open a new file and save it as geocode-locations.py. As usual, import the
packages that you need for the rest of the script.

from geopy import geocoders

import csv

You also need an API key for each service you want to use. For the pur-
poses of this example, you only need one from Google.

Store your API key in a variable named g_api_key, and then use it when you
instantiate the geocoder.

g_api_key = ‘INSERT_YOUR_API_KEY_HERE’

g = geocoders.Google(g_api_key)

Load the costcos-limited.csv data file, and then loop. For each row, you
piece together the full address and then plug it in for geocoding.

costcos = csv.reader(open(‘costcos-limited.csv’), delimiter=’,’)

next(costcos) # Skip header

Print header

�
Visit http://code
.google.com/apis/

maps/signup.html
to sign up for a
free API key for
the Google Maps
API. It’s straight-
forward and takes
only a couple of
minutes.

note

Spe cifi c Lo c atio n s 275

print “Address,City,State,Zip Code,Latitude,Longitude”

for row in costcos:

 full_addy = row[1] + “,” + row[2] + “,” + row[3] + “,” + row[4]

 place, (lat, lng) = list(g.geocode(full_addy, exactly_one=False))[0]

 print full_addy + “,” + str(lat) + “,” + str(lng)

That’s it. Run the Python script, and save the output as costcos-geocoded.csv.
Here’s what the first few lines of the data looks like:

Address,City,State,Zip Code,Latitude,Longitude

1205 N. Memorial Parkway,Huntsville,Alabama,35801-5930,34.7430949,-86

.6009553

3650 Galleria Circle,Hoover,Alabama,35244-2346,33.377649,-86.81242

8251 Eastchase Parkway,Montgomery,Alabama,36117,32.363889,-86.150884

5225 Commercial Boulevard,Juneau,Alaska,99801-7210,58.3592,-134.483

330 West Dimond Blvd,Anchorage,Alaska,99515-1950,61.143266,-149.884217

...

Pretty cool. By some stroke of luck, latitude and longitude coordinates are
found for every address. That usually doesn’t happen. If you do run into
that problem, you should add error checking at the second to last line of
the preceding script.

 try:

 place, (lat, lng) = list(g.geocode(full_addy, exactly_one=False))

[0]

 print full_addy + “,” + str(lat) + “,” + str(lng)

 except:

 print full_addy + “,NULL,NULL”

This tries to find the latitude and longitude coordinates, and if it fails, it
prints the row with the address and null coordinate values. Run the Python
script and save the output as a file, and you can go back and look for the
nulls. You can either try a different service for the missing addresses via
Geopy, or you can just manually enter the addresses in Geocoder.us.

Just Points
Now that you have points with latitude and longitude, you can map them.
The straightforward route is to do the computer equivalent of putting
pushpins in a paper map on a billboard. As shown in the framework in Fig-
ure 8-1, you place a marker for each location on the map.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s276

Figure 8-1 ​ Mapping points framework

Although a simple concept, you can see features in the data such as clus-
tering, spread, and outliers.

Map with Dots

R, although limited in mapping functionality, makes placing dots on a map
easy. The maps package does most of the work. Go ahead and install it
via the Package Installer, or use install.packages() in the console. When
installed, load it into the workspace.

library(maps)

Next step: Load the data. Feel free to use the Costco locations that you just
geocoded, or for convenience, I’ve put the processed dataset online, so you
can load it directly from the URL.

costcos <-

 read.csv(“http://book.flowingdata.com/ch08/geocode/costcos-geocoded

 .csv”, sep=”,”)

Spe cifi c Lo c atio n s 277

Now on to mapping. When you create your maps, it’s useful to think of
them as layers (regardless of the software in use). The bottom layer is
usually the base map that shows geographical boundaries, and then you
place data layers on top of that. In this case the bottom layer is a map of
the United States, and the second layer is Costco locations. Here’s how to
make the first layer, as shown in Figure 8-2.

map(database=”state”)

Figure 8-2 ​ Plain map of the United States

The second layer, or Costco’s, are then mapped with the symbols() func-
tion. This is the same function you used to make the bubble plots in Chap-
ter 6, “Visualizing Relationships,” and you use it in the same way, except
you pass latitude and longitude instead of x- and y-coordinates. Also set
add to TRUE to indicate that you want symbols to be added to the map rather
than creating a new plot.

symbols(costcos$Longitude, costcos$Latitude,

 circles=rep(1, length(costcos$Longitude)), inches=0.05, add=TRUE)

Figure 8-3 shows the results. All the circles are the same size because
you set circles to an array of ones with the length equal to the number
of locations. You also set inches to 0.05, which sizes the circles to that
number. If you want smaller markers, all you need to do is decrease that
value.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s278

Figure 8-3 ​ Map of Costco locations

As before, you can change the colors of both the map and the circles so
that the locations stand out and boundary lines sit in the background, as
shown in Figure 8-4. Now change the dots to a nice Costco red and the
state boundaries to a light gray.

map(database=”state”, col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.5, circles=rep(1, length(costcos$Longitude)),

 inches=0.05, add=TRUE)

Figure 8-4 ​ Using color with mapped locations

Spe cifi c Lo c atio n s 279

In Figure 8-3, the unfilled circles and the map were all the same color and
line width, so everything blended together, but with the right colors, you
can make the data sit front and center.

It’s not bad for a few lines of code. Costco has clearly focused on opening
locations on the coasts with clusters in southern and northern California,
northwest Washington, and in the northeast of the country.

However, there is a glaring omission here. Well, two of them actually.
Where are Alaska and Hawaii? They’re part of the United States, too, but
are nowhere to be found even though you use the “state” database with
map(). The two states are actually in the “world” database, so if you want to
see Costco locations in Alaska in Hawaii, you need to map the entire world,
as shown in Figure 8-5.

map(database=”world”, col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.3, circles=rep(1, length(costcos$Longitude)),

 inches=0.03, add=TRUE)

Figure 8-5 ​ World map of Costco locations

It’s a waste of space, I know. There are options that you can mess around
with, which you can find in the documentation, but you can edit the rest in
Illustrator to zoom in on the United States or remove the other countries
from view.

�

Tip

With R, when in
doubt, always
jump to the
documentation for
the function or
package you’re
stuck on by
preceding the
name with a
question mark.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s280

Taking the map in the opposite direction, say you want to only map Costco
locations for a few states. You can do that with the region argument.

map(database=”state”, region=c(“California”, “Nevada”, “Oregon”,

 “Washington”), col=”#cccccc”)

symbols(costcos$Longitude, costcos$Latitude, bg=”#e2373f”, fg=”#ffffff”,

 lwd=0.5, circles=rep(1, length(costcos$Longitude)), inches=0.05,

 add=TRUE)

As shown in Figure 8-6, you create a bottom layer with California, Nevada,
Oregon, and Mexico. Then you create the data layer on top of that. Some
dots are not in any of those states, but they’re in the plotting region, so
they still appear. Again, it’s trivial to remove those in your favorite vector
editing software.

Map with Lines

In some cases it could be useful to connect the dots on your map if the
order of the points have any relevance. With online location services such
as Foursquare growing in popularity, location traces aren’t all that rare.
An easy way to draw lines is, well, with the lines() function. To demon-
strate, look at locations I traveled during my seven days and nights as a
spy for the fake government of Fakesville. Start with loading the data (as
usual) and drawing a base world map.

faketrace <-

 read.csv(“http://book.flowingdata.com/ch08/points/fake-trace.txt”,

 sep=”\t”)

map(database=”world”, col=”#cccccc”)

Take a look at the data frame by entering faketrace in your R console. You
see that it’s just two columns for latitude and longitude and eight data
points. You can assume that the points are already in the order that I trav-
eled during those long seven nights.

 latitude longitude

1 46.31658 3.515625

2 61.27023 69.609375

3 34.30714 105.468750

4 -26.11599 122.695313

5 -30.14513 22.851563

6 -35.17381 -63.632813

7 21.28937 -99.492188

8 36.17336 -115.180664

Spe cifi c Lo c atio n s 281

Figure 8-6 ​C ostco locations in selected states

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s282

Draw the lines by simply plugging in the two columns into lines(). Also
specify color (col) and line width (lwd).

lines(faketrace$longitude, faketrace$latitude, col=”#bb4cd4”, lwd=2)

Now also add dots, exactly like you just did with the Costco locations, for
the graphic in Figure 8-7.

symbols(faketrace$longitude, faketrace$latitude, lwd=1, bg=”#bb4cd4”,

fg=”#ffffff”, circles=rep(1, length(faketrace$longitude)), inches=0.05,

add=TRUE)

Figure 8-7 ​ Drawing a location trace

After those seven days and nights as a spy for the Fakesville government, I
decided it wasn’t for me. It’s just not as glamorous as James Bond makes
it out to be. However, I did make connections in all the countries I visited.
It could be interesting to draw lines from my location to all the others, as
shown in Figure 8-8.

map(database=”world”, col=”#cccccc”)

for (i in 2:length(faketrace$longitude)-1) {

 lngs <- c(faketrace$longitude[8], faketrace$longitude[i])

 lats <- c(faketrace$latitude[8], faketrace$latitude[i])

 lines(lngs, lats, col=”#bb4cd4”, lwd=2)

}

Spe cifi c Lo c atio n s 283

Figure 8-8 ​ Drawing worldwide connections

After you create the base map, you can loop through each point and draw a
line from the last point in the data frame to every other location. This isn’t
incredibly informative, but maybe you can find a good use for it. The point
here is that you can draw a map and then use R’s other graphics functions
to draw whatever you want using latitude and longitude coordinates.

By the way, I wasn’t actually a spy for Fakesville. I was just kidding
about that.

Scaled Points
Switching gears back to real data and a more interesting topic than my
fake spy escapades, more often than not, you don’t just have locations. You
also have another value attached to locations such as sales for a business
or city population. You can still map with points, but you can take the prin-
ciples of the bubble plot and use it on a map.

I don’t have to explain how bubbles should be sized by area and not radius
again, right? Okay, cool.

Map with Bubbles

In this example, look at adolescent fertility rate as reported by the
United Nations Human Development Report—that is, the number of
births per 1,000 women aged 15 to 19 in 2008. The geo-coordinates were

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s284

provided by GeoCommons. You want to size bubbles in proportion to
these rates.

The code is almost the same as when you mapped Costco locations, but
remember you just passed a vector of ones for circle size in the symbols()
function. Instead, we use the sqrt() of the rates to indicate size.

fertility <-

 read.csv(“http://book.flowingdata.com/ch08/points/adol-fertility.csv”)

map(‘world’, fill = FALSE, col = “#cccccc”)

symbols(fertility$longitude, fertility$latitude,

 circles=sqrt(fertility$ad_fert_rate), add=TRUE,

 inches=0.15, bg=”#93ceef”, fg=”#ffffff”)

Figure 8-9 ​ Adolescent fertility rate worldwide

Figure 8-9 shows the output. Immediately, you should see that African
countries tend to have the highest adolescent fertility rates, whereas
European countries have relatively lower rates. From the graphic alone,
it’s not clear what value each circle represents because there is no leg-
end. A quick look with summary() in R can tell you more.

summary(fertility$ad_fert_rate)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

 3.20 16.20 39.00 52.89 78.20 201.40 1.00

R egion s 285

That’s fine for us, an audience of one, but you need to explain more
if you want others, who haven’t looked at the data, to understand the
graphic. You can add annotation to highlight countries with the highest
and lowest fertility rates, point out the country where most readers will
be from (in this case, the United States), and provide a lead-in to set
up readers for what they’re going to look at. Figure 8-10 shows these
changes.

Figure 8-10 ​ Rates more clearly explained for a wider audience

Regions
Mapping points can take you only so far because they represent only single
locations. Counties, states, countries, and continents are entire regions
with boundaries, and geographic data is usually aggregated in this way.
For example, it’s much easier to find health data for a state or a country
than it is for individual patients or hospitals. This is usually done for pri-
vacy, whereas other times aggregated data is just easier to distribute. In

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s286

any case, this is usually how you’re going to use your spatial data, so now
learn to visualize it.

Color by Data
Choropleth maps are the most common way to map regional data.
Based on some metric, regions are colored following a color scale that
you define, as shown in Figure 8-11. The areas and location are already
defined, so your job is to decide the appropriate color scales to use.

Figure 8-11 ​C horopleth map framework

As touched on in a previous chapter, Cynthia Brewer’s ColorBrewer is a
great way to pick your colors, or at least a place to start to design a color
palette. If you have continuous data, you might want a similarly continuous
color scale that goes from light to dark, but all with the same hue (or mul-
tiple similar hues), as shown in Figure 8-12.

R egion s 287

A diverging color scheme, as shown in Figure 8-13, might be good if your
data has a two-sided quality to it, such as good and bad or above and
below a threshold.

Figure 8-12 ​ Sequential color schemes with ColorBrewer

Figure 8-13 ​ Diverging color schemes with ColorBrewer

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s288

Finally, if your data is qualitative with classes or categories, then you
might want a unique color for each (Figure 8-14).

Figure 8-14 ​ Qualitative color scheme with ColorBrewer

When you have your color scheme, you have two more things to do. The
first is to decide how the colors you picked match up to the data range, and
the second is to assign colors to each region based on your choice. You can
do both with Python and Scalable Vector Graphics (SVG) in the following
examples.

Map Counties

The U.S. Bureau of Labor Statistics provides county-level unemployment
data every month. You can download the most recent rates or go back
several years from its site. However, the data browser it provides is kind of
outdated and roundabout, so for the sake of simplicity (and in case the BLS
site changes), you can download the data at http://book.flowingdata.com/
ch08/regions/unemployment-aug2010.txt. There are six columns. The first is a
code specific to the Bureau of Labor Statistics. The next two together are
a unique id specifying county. The fourth and fifth columns are the county
name and month the rate is an estimate of, respectively. The last column

R egion s 289

is the estimated percentage of people in the county who are unemployed.
For the purposes of this example, you care only about the county id (that is,
FIPS codes) and the rate.

Now for the map. In previous examples, you generated base maps in R, but
now you can use Python and SVG to do this. The former is to process the
data, and the latter is for the map itself. You don’t need to start completely
from scratch, though. You can get a blank map from Wikimedia Commons
found here: http://commons.wikimedia.org/wiki/File:USA_Counties_with_FIPS_
and_names.svg, as shown in Figure 8-15. The page links to the map in four
sizes in PNG format and then one in SVG. You want the SVG one. Download
the SVG file and save it as counties.svg, in the same directory that you save
the unemployment data.

Figure 8-15 ​ Blank U.S. county map from Wikimedia Commons

The important thing here, if you’re not familiar with SVG, is that it’s actu-
ally an XML file. It’s text with tags, and you can edit it in a text editor like
you would an HTML file. The browser or image viewer reads the XML, and
the XML tells the browser what to show, such as the colors to use and
shapes to draw.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s290

To drive the point home, open the map SVG file in a text editor to see what
you’re dealing with. It’s mostly SVG declarations and boiler plate stuff,
which you don’t totally care about right now.

Scroll down some more to start to see some <path> tags, as shown in
Figure 8-16. All those numbers in a single tag specify the boundaries of a
county. You’re not going to touch those. You’re interested in changing the
fill color of each county to match the corresponding unemployment rate.
To do that, you need to edit the style in the path.

Figure 8-16 ​ Paths specified in SVG file

Notice how each <path> starts with style? Those who have written CSS can
immediately recognize this. There is a fill attribute followed by a hexa-
decimal color, so if you change that in the SVG file, you change the color
of the output image. You could edit each one manually, but there are more
than 3,000 counties. That would take way too long. Instead, come back to
your old friend Beautiful Soup, the Python package that makes parsing
XML and HTML relatively easy.

Open a blank file in the same directory as your SVG map and unemploy-
ment data. Save it as colorize_svg.py. You need to import the CSV data file

�

Tip

�

SVG files are
XML files, which
are easy to change
in a text editor.
This also means
that you can parse
the SVG code to
make changes
programmatically.

�SVG files are
XML files, which
are easy to change
in a text editor.
This also means
that you can parse
the SVG code to
make changes
programmatically.

R egion s 291

and parse the SVG file with Beautiful Soup, so start by importing the nec-
essary packages.

import csv

from BeautifulSoup import BeautifulSoup

Then open the CSV file and store it so that you can iterate through the
rows using csv.reader(). Note that the “r” in the open() function just means
that you want to open the file to read its contents, as opposed to writing
new rows to it.

reader = csv.reader(open(‘unemployment-aug2010.txt’, ‘r’), delimiter=”,”)

Now also load the blank SVG county map.

svg = open(‘counties.svg’, ‘r’).read()

Cool, you loaded everything you need to create a choropleth map. The
challenge at this point is that you need to somehow link the data to the
SVG. What is the commonality between the two? I’ll give you a hint. It
has to do with each county’s unique id, and I mentioned it earlier. If you
guessed FIPS codes, then you are correct!

Each path in the SVG file has a unique id, which happens to be the com-
bined FIPS state and county FIPS code. Each row in the unemployment
data has the state and county FIPS codes, too, but they’re separate. For
example, the state FIPS code for Autauga County, Alabama, is 01, and its
county FIPS code is 001. The path id in the SVG are those two combined:
01001.

You need to store the unemployment data so that you can retrieve each
county’s rate by FIPS code, as we iterate through each path. If you start to
become confused, stay with me; it’ll be clearer with actual code. But the
main point here is that the FIPS codes are the common bond between your
SVG and CSV, and you can use that to your advantage.

To store the unemployment data so that it’s easily accessible by FIPS code
later, use a construct in Python called a dictionary. It enables you to store
and retrieve values by a keyword. In this case, your keyword is a combined
state and county FIPS code, as shown in the following code.

unemployment = {}

min_value = 100; max_value = 0

for row in reader:

�

Tip

Paths in SVG files,
geographic ones in
particular, usually
have a unique id.
It’s not always
FIPS code, but the
same rules apply.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s292

 try:

 full_fips = row[1] + row[2]

 rate = float(row[8].strip())

 unemployment[full_fips] = rate

 except:

 pass

Next parse the SVG file with BeautifulSoup. Most tags have an opening and
closing tag, but there are a couple of self-closing tags in there, which you
need to specify. Then use the findAll() function to retrieve all the paths in
the map.

soup = BeautifulSoup(svg, selfClosingTags=[‘defs’,’sodipodi:namedview’])

paths = soup.findAll(‘path’)

Then store the colors, which I got from ColorBrewer, in a Python list. This
is a sequential color scheme with multiple hues ranging from purple to red.

colors = [“#F1EEF6”, “#D4B9DA”, “#C994C7”, “#DF65B0”, “#DD1C77”, “#980043”]

You’re getting close to the climax. Like I said earlier, you’re going to
change the style attribute for each path in the SVG. You’re just interested
in fill color, but to make things easier, you can replace the entire style
instead of parsing to replace only the color. I changed the hexadecimal
value after stroke to #ffffff, which is white. This changes the borders to
white instead of the current gray.

path_style = ‘font-size:12px;fill-rule:nonzero;stroke:#fffff;stroke-

opacity:1;stroke-width:0.1;stroke-miterlimit:4;stroke-

dasharray:none;stroke-linecap:butt;marker-start:none;stroke-

linejoin:bevel;fill:’

I also moved fill to the end and left the value blank because that’s the
part that depends on each county’s unemployment rate.

Finally, you’re ready to change some colors! You can iterate through each
path (except for state boundary lines and the separator for Hawaii and
Alaska) and color accordingly. If the unemployment rate is greater than 10,
use a darker shade, and anything less than 2 has the lightest shade.

for p in paths:

 if p[‘id’] not in [“State_Lines”, “separator”]:

 # pass

R egion s 293

 try:

 rate = unemployment[p[‘id’]]

 except:

 continue

 if rate > 10:

 color_class = 5

 elif rate > 8:

 color_class = 4

 elif rate > 6:

 color_class = 3

 elif rate > 4:

 color_class = 2

 elif rate > 2:

 color_class = 1

 else:

 color_class = 0

 color = colors[color_class]

 p[‘style’] = path_style + color

The last step is to print out the SVG file with prettify(). The function con-
verts your soup to a string that your browser can interpret.

print soup.prettify()

Now all that’s left to do is run the Python script and save the output as a
new SVG file named, say, colored_map.svg (Figure 8-17).

Figure 8-17 ​ Running Python script and saving output as a
new SVG file

P You can grab
the script in its
entirety here:
http://book

.flowingdata.com/

ch08/regions/

colorize_svg

.py.txt

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s294

Open your brand spanking new choropleth map in Illustrator or a modern
browser such as Firefox, Safari, or Chrome to see the fruits of your labor,
as shown in Figure 8-18. It’s easy to see now where in the country there
were higher unemployment rates during August 2010. Obviously a lot of
the west coast and much of the southeast had higher rates, as did Alaska
and Michigan. There are a lot of counties in middle America with relatively
lower unemployment rates.

With the hard part of this exercise done, you can customize your map to
your heart’s content. You can edit the SVG file in Illustrator, change border
colors and sizes, and add annotation to make it a complete graphic for a
larger audience. (Hint: It still needs a legend.)

Figure 8-18 ​C horopleth map showing unemployment rates

The best part is that the code is reusable, and you can apply it to other
datasets that use the FIPS code. Or even with this same dataset, you can
mess around with color scheme to design a map that fits with the theme of
your data.

Depending on your data, you can also change the thresholds for how to color
each region. The examples so far used equal thresholds where regions

R egion s 295

were colored with six shades, and every 2 percentage points was a new
class. Every county with an unemployment rate greater than 10 percent was
one class; then counties with rates between 8 and 10, then 6 and 8, and so
forth. Another common way to define thresholds is by quartiles, where you
use four colors, and each color represents a quarter of the regions.

For example, the lower, middle, and upper quartiles for these unemploy-
ment rates are 6.9, 8.7, and 10.8 percent, respectively. This means that
a quarter of the counties have rates below 6.9 percent, another quarter
between 6.9 and 8.7, one between 8.7 and 10.8, and the last quarter is
greater than 10.8 percent. To do this, change the colors list in your script
to something like the following. It’s a purple color scheme, with one shade
per quarter.

colors = [“#f2f0f7”, “#cbc9e2”, “#9e9ac8”, “#6a51a3”]

Then modify the color conditions in the for loop, using the preceding
quartiles.

 if rate > 10.8:

 color_class = 3

 elif rate > 8.7:

 color_class = 2

 elif rate > 6.9:

 color_class = 1

 else:

 color_class = 0

Run the script and save like before, and you get Figure 8-19. Notice how
there are more counties colored lightly.

To increase the usability of your code, you can calculate quartiles pro-
grammatically instead of hard-coding them. This is straightforward in
Python. You store a list of your values, sort them from least to great-
est, and find the values at the one-quarter, one-half, and three-quarters
marks. More concretely, as it pertains to this example, you can modify the
first loop in colorize_svg.py to store just unemployment rates.

unemployment = {}

rates_only = [] # To calculate quartiles

min_value = 100; max_value = 0; past_header = False

for row in reader:

 if not past_header:

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s296

 past_header = True

 continue

 try:

 full_fips = row[1] + row[2]

 rate = float(row[5].strip())

 unemployment[full_fips] = rate

 rates_only.append(rate)

 except:

 pass

Then you can sort the array, and find the quartiles.

Quartiles

rates_only.sort()

q1_index = int(0.25 * len(rates_only))

q1 = rates_only[q1_index] # 6.9

q2_index = int(0.5 * len(rates_only))

q2 = rates_only[q2_index] # 8.7

q3_index = int(0.75 * len(rates_only))

q3 = rates_only[q3_index] # 10.8

Figure 8-19 ​ Unemployment rates divided by quartiles

R egion s 297

Instead of hard-coding the values 6.9, 8.7, and 10.8 in your code, you can
replace those values with q1, q2, and q3, respectively. The advantage of cal-
culating the values programmatically is that you can reuse the code with a
different dataset just by changing the CSV file.

Which color scale you choose depends on that data you have and what
message you want to convey. For this particular dataset, I prefer the lin-
ear scale because it represents the distribution better and highlights the
relatively high unemployment rates across the country. Working from Fig-
ure 8-18, you can add a legend, a title, and a lead-in paragraph for a more
finalized graphic, as shown in Figure 8-20.

Figure 8-20 ​ Finished map with title, lead-in, and legend

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s298

Map Countries

The process to color counties in the previous example isn’t exclusive to
these regions. You can use the same steps to color states or countries. All
you need is an SVG file with unique ids for each region you want to color
(which are easily accessible on Wikipedia) and data with ids to match. Now
try this out with open data from the World Bank.

Look at percentages of urban populations with access to an improved water
source, by country, in 2008. You can download the Excel file from the World
Bank data site here: http://data.worldbank.org/indicator/SH.H2O.SAFE.UR.ZS/
countries. For convenience, you can also download the stripped down data
as a CSV file here: Full URL is: http://book.flowingdata.com/ch08/worldmap/
water-source1.txt. There are some countries with missing data, which is
common with country-level data. I’ve removed those rows from the CSV file.

There are seven columns. The first is the country name; the second is a
country code (could this be your unique id?); and the last five columns are
percentages for 1990 to 2008.

For the base map, again go to Wikipedia. You can find a lot of versions when
you search for the SVG world map, but use the one found here: http://
en.wikipedia.org/wiki/File:BlankMap-World6.svg. Download the full resolution
SVG file, and save it in the same directory as your data. As shown in Fig-
ure 8-21, it’s a blank world map, colored gray with white borders.

Figure 8-21  Blank world map

�World Bank
is one of the
most complete
resources for
country-specific
demographic
data. I usually
go here first.

Tip

R egion s 299

Open the SVG file in a text editor. It is of course all text formatted as
XML, but it’s formatted slightly differently than your counties example.
Paths don’t have useful ids and the style attribute is not used. The paths
do, however, have classes that look like country codes. They have only
two letters, though. The country codes used in the World Bank data have
three letters.

According to World Bank documentation, it uses ISO 3166-1 alpha 3 codes.
The SVG file from Wikipedia, on the other hand, uses ISO 3166-1 alpha 2
codes. The names are horrible, I know, but don’t worry; you don’t have to
remember that. All you need to know is that Wikipedia provides a conver-
sion chart at http://en.wikipedia.org/wiki/ISO_3166-1. I copied and pasted
the table into Excel and then saved the important bits as a text file. It has
one column for the alpha 2 and another for the alpha 3. Download it here:
http://book.flowingdata.com/ch08/worldmap/country-codes.txt. Use this
chart to switch between the two codes.

As for styling each country, take a slightly different route to do that, too.
Instead of changing attributes directly in the path tags, use CSS outside of
the paths to color the regions. Now jump right in.

Create a file named generate_css.py in the same directory as the SVG and
CSV files. Again, import the CSV package to load the data in the CSV files
with the country codes and water access percentages.

import csv

codereader = csv.reader(open(‘country-codes.txt’, ‘r’), delimiter=”\t”)

waterreader = csv.reader(open(‘water-source1.txt’, ‘r’), delimiter=”\t”)

Then store the country codes so that it’s easy to switch from alpha 3 to
alpha 2.

alpha3to2 = {}

i = 0

next(codereader)

for row in codereader:

 alpha3to2[row[1]] = row[0]

This stores the codes in a Python dictionary where alpha 3 is the key and
alpha 2 is the value.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s300

Now like in your previous example, iterate through each row of the water
data and assign a color based on the value for the current country.

i = 0

next(waterreader)

for row in waterreader:

 if row[1] in alpha3to2 and row[6]:

 alpha2 = alpha3to2[row[1]].lower()

 pct = int(row[6])

 if pct == 100:

 fill = “#08589E”

 elif pct > 90:

 fill = “#08589E”

 elif pct > 80:

 fill = “#4EB3D3”

 elif pct > 70:

 fill = “#7BCCC4”

 elif pct > 60:

 fill = “#A8DDB5”

 elif pct > 50:

 fill = “#CCEBC5”

 else:

 fill = “#EFF3FF”

 print ‘.’ + alpha2 + ‘ { fill: ‘ + fill + ‘ }’

 i += 1

This part of the script executes the following steps:

1.	 Skip the header of the CSV.

2.	 It starts the loop to iterate over water data.

3.	 If there is a corresponding alpha 2 code to the alpha 3 from the CSV,
and there is data available for the country in 2008, it finds the matching
alpha 2.

4.	 Based on the percentage, an appropriate fill color is chosen.

5.	 A line of CSS is printed for each row of data.

Run generate_css.py and save the output as style.css. The first few rows of
the CSS will look like this:

.af { fill: #7BCCC4 }

.al { fill: #08589E }

R egion s 301

.dz { fill: #4EB3D3 }

.ad { fill: #08589E }

.ao { fill: #CCEBC5 }

.ag { fill: #08589E }

.ar { fill: #08589E }

.am { fill: #08589E }

.aw { fill: #08589E }

.au { fill: #08589E }

...

This is standard CSS. The first row, for example, changes the fill color of
all paths with class .af to #7BCCC4.

Open style.css in your text editor and copy all the contents. Then open
the SVG map and paste the contents at approximately line 135, below the
brackets for .oceanxx. You just created a choropleth map of the world col-
ored by the percentage of population with access to an improved water
source, as shown in Figure 8-22. The darkest blue indicates 100 percent,
and the lightest shades of green indicate lower percentages. Countries
that are still gray indicate countries where data was not available.

Figure 8-22 ​C horopleth world map showing access to improved water source

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s302

The best part is that you can now download almost any dataset from the
World Bank (and there are a lot of them) and create a choropleth map
fairly quickly just by changing a few lines of code. To spruce up the graphic
in Figure 8-22, again, you can open the SVG file in Illustrator and edit away.
Mainly, the map needs a title and a legend to indicate what each shade
means, as shown in Figure 8-23.

Figure 8-23 ​ Finished world map

Over Space and Time
The examples so far enable you to visualize a lot of data types, whether it
be qualitative or quantitative. You can vary colors, categories, and symbols
to fit the story you’re trying to tell; annotate your maps to highlight specific
regions or features; and aggregate to zoom in on counties or countries.

O ver Spa ce a nd T ime 303

But wait, there’s more! You don’t have to stop there. If you incorporate
another dimension of data, you can see changes over both time and space.

In Chapter 4, “Visualizing Patterns over Time,” you visualized time more
abstractly with lines and plots, which is useful, but when location is
attached to your data, it can be more intuitive to see the patterns and
changes with maps. It’s easier to see clustering or groups of regions that
are near in physical distance.

The best part is that you can incorporate what you’ve already learned to
visualize your data over space and time.

Small Multiples
You saw this technique in Chapter 6, “Visualizing Relationships,” to visual-
ize relationships across categories, and it can be applied to spatial data,
too, as shown in Figure 8-24. Instead of small bar graphs, you can use
small maps, one map for each slice of time. Line them up left to right or
stack them top to bottom, and it’s easy for your eyes to follow the changes.

Figure 8-24 ​ Small multiples with maps

For example, in late 2009, I designed a graphic that showed unemployment
rates by county (Figure 8-25). I actually used a variation of the code you
just saw in the previous section, but I applied it to several slices of time.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s304

Figure 8-25 ​ Unemployment rates from 2004 to 2009

It’s easy to see the changes, or lack thereof, by year, from 2004 through
2006, as shown in Figure 8-26. The national average actually went down
during that time.

Figure 8-26 ​ Unemployment rates 2004 to 2006

Then 2008 hits (Figure 8-27), and you start to see some of the increases
in the unemployment rate, especially in California, Oregon, and Michigan,
and some counties in the southeast.

O ver Spa ce a nd T ime 305

Fast forward to 2009, and there is a clear difference, as shown in Fig-
ure 8-28. The national average increased 4 percentage points and the
county colors become very dark.

Figure 8-27 ​ Unemployment rates
in 2008

This was one of the most popular graphics I posted on FlowingData
because it’s easy to see that dramatic change after several years of rela-
tive standstill. I also used the OpenZoom Viewer, which enables you to
zoom in on high-resolution images, so you can focus on your own area to
see how it changed.

I could have also visualized the data as a time series plot, where each line
represented a county; however, there are more than 3,000 U.S. counties.
The plot would have felt cluttered, and unless it was interactive, you would
not be able to tell which line represented which county.

Take the Difference
You don’t always need to create multiple maps to show changes. Some-
times it makes more sense to visualize actual differences in a single map.
It saves space, and it highlights changes instead of single slices in time, as
shown in Figure 8-29.

P When high-res-
olution images are
too big to display
on a single moni-
tor, it can be useful
to put the image
in OpenZoom
Viewer (http://
openzoom.org)
so that you can
see the picture
and then zoom in
on the details.

Figure 8-28 ​ Unemployment rates during
September 2009

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s306

Figure 8-29 ​ Focusing on change

If you were to download urban population counts from the World Bank,
you’d have similar data to the previous example using access to improved
water. Each row is a country, and each column is a year. However, the
urban population data is raw counts for an estimated number of people
in the country living in urban areas. A choropleth map of these counts
would inevitably highlight larger countries because they of course have
larger populations in general. Two maps to show the difference in urban
population between 2005 and 2009 wouldn’t be useful unless you changed
the values to proportions. To do that, you’d have to download population
data for 2005 and 2009 in all countries and then do some simple math. It’s
not all that hard to do that, but it’s an extra step. Plus, if the changes are
subtle, they’ll be hard to see across multiple maps.

Instead, you can take the difference and show it in a single map. You can
easily calculate this in Excel or modify the previous Python script, and
then make a single map, as shown in Figure 8-30.

It’s easy to see which countries changed the most and which ones changed
the least when you visualize the differences. In contrast, Figure 8-31
shows the proportion of each country’s total population that lived in an
urban area in 2005.

O ver Spa ce a nd T ime 307

Figure 8-30 ​C hange in urban population from 2005 to 2009

Figure 8-31 ​ Proportion of people living in an urban area in 2005

Figure 8-32 shows the same data for 2009. It looks similar to Figure 8-31,
and you can barely notice a difference.

For this particular example, it’s clear that the single map is more informa-
tive. You have to do a lot less work mentally to decipher the changes. It’s
obvious that although many countries in Africa have a relatively lower per-
centage of their population living in urban areas compared to the rest of
the world, they have also changed the most in recent years.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s308

Figure 8-32 ​ Proportion of people living in an urban area in 2009

Remember to add a legend, source, and title if your graphic is for a wider
audience, as shown in Figure 8-33.

Figure 8-33 ​ Annotated map of differences

O ver Spa ce a nd T ime 309

Animation
One of the more obvious ways to visualize changes over space and time
is to animate your data. Instead of showing slices in time with individual
maps, you can show the changes as they happen on a single interactive
map. This keeps the intuitiveness of the map, while allowing readers to
explore the data on their own.

A few years ago, I designed a map that shows the growth of Walmart across
the United States, as shown in Figure 8-34. The animation starts with the
fist store that opened in 1962 in Rogers, Arkansas, and then moves through
2010. For each new store that opened up, another dot appears on the map.
The growth is slow at first, and then Walmarts spread across the country
almost like a virus. It keeps growing and growing, with bursts in areas
where the company makes large acquisitions. Before you know it, Walmart
is everywhere.

Figure 8-34 ​ Animated map showing growth of Walmart stores

At the time, I was just trying to learn Flash and ActionScript, but the map
was shared across the web and has been viewed millions of times. I later
created a similar map showing the growth of Target (Figure 8-35), and it
was equally well spread.

P View the Wal-
mart map in its
entirety at http://
datafl.ws/197.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s310

Figure 8-35 ​ Animated map showing growth of Target stores

People have been so interested for two main reasons. The first is that
the animated map enables you to see patterns that you wouldn’t see with
a time series plot. A regular plot would show only the number of store
openings per year, which is fine if that’s the story you want to tell, but the
animated maps show growth that’s more organic, especially with the Wal-
mart one.

The second reason is that the map is immediately understandable to a
general audience. When the animation starts, you know what you’re see-
ing. I’m not saying there isn’t value in visualization that takes time to inter-
pret; it’s often the opposite. However, there’s a low time threshold for the
web, so because the map is intuitive (and that people can zoom in on their
own local areas) certainly helped the eager sharing.

Create an Animated Growth Map

In this example, you create the Walmart growth map in ActionScript. You
use Modest Maps, an ActionScript mapping library to provide interaction
and the base map. The rest you code yourself. Download the complete
source code at http://book.flowingdata.com/ch08/Openings_src.zip. Instead

P You can watch
the growth of
Target stores at
http://datafl

.ws/198.

P Download
Modest Maps
at http://­
modestmaps.com.

O ver Spa ce a nd T ime 311

of going through every line and file, you’ll look at just the important bits in
this section.

As in Chapter 5, “Visualizing Proportions,” when you create a stacked
area chart with ActionScript and the Flare visualization toolkit, I highly
recommend you use Adobe Flex Builder. It makes ActionScript a lot easier
and keeps your code organized. You can of course still code everything in
a standard text editor, but Flex Builder wraps up the editor, debugging,
and compiling into one package. This example assumes you do have Flex
Builder, but you are of course welcome to grab an ActionScript 3 compiler
from the Adobe site.

To begin, open Flex Builder 3, and right-click the left sidebar, which shows
the current list of projects. Select Import, as shown in Figure 8-36.

Figure 8-36 ​ Import ActionScript project

Select Existing Projects Into Workspace, as shown in Figure 8-37.

Then, as shown in Figure 8-38, browse to the directory in which you saved
the code. The Openings project should appear after selecting the root
directory.

�
Adobe Flex
Builder was
recently changed
to Adobe Flash
Builder. There are
small differences
between the two,
but you can use
either.

note

P Download
the growth map
code in its entirety
at http://book
.flowingdata.com/

ch08/Openings_src

.zip to follow
along in this
example.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s312

Figure 8-37 ​ Existing project

Figure 8-38 ​ Import Openings project

O ver Spa ce a nd T ime 313

Your workspace in Flex Builder should look similar to Figure 8-39.

Figure 8-39 ​ Workspace after importing project

All of the code is in the src folder. This includes Modest Maps in the com
folder and TweenFilterLite in the gs folder, which help with transitions.

With the Openings project imported, you’re ready to start building the
map. Do this in two parts. In the first part create an interactive base map.
In the second add the markers.

Add the Interactive Base Map

In Openings.as, the first lines of code import the necessary packages.

 import com.modestmaps.Map;

 import com.modestmaps.TweenMap;

 import com.modestmaps.core.MapExtent;

 import com.modestmaps.geo.Location;

 import com.modestmaps.mapproviders.OpenStreetMapProvider;

 import flash.display.Sprite;

 import flash.display.StageAlign;

 import flash.display.StageScaleMode;

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s314

 import flash.events.Event;

 import flash.events.MouseEvent;

 import flash.filters.ColorMatrixFilter;

 import flash.geom.ColorTransform;

 import flash.text.TextField;

 import flash.net.*;

The first section imports classes from the Modest Maps package, whereas
the second section imports display objects and event classes provided by
Flash. The name of each class isn’t important right now. That becomes
clear as you use them. However, the naming pattern for the first section
matches the directory structure, starting with com, then modestmaps, and
ending with Map. This is how you import classes most of the time when you
write your own ActionScript.

Above public class Openings extends Sprite, several variables—width,
height, background color, and frame rate—of the compiled Flash file are
initialized.

 [SWF(width=”900”, height=”450”, backgroundColor=”#ffffff”,

frameRate=”32”)]

Then after the class declaration, you need to specify some variables and
initialize a Map object.

 private var stageWidth:Number = 900;

 private var stageHeight:Number = 450;

 private var map:Map;

 private var mapWidth:Number = stageWidth;

 private var mapHeight:Number = stageHeight;

In between the brackets of the Openings() function, you can now create
your first interactive map with Modest Maps.

 stage.scaleMode = StageScaleMode.NO_SCALE;

 stage.align = StageAlign.TOP_LEFT;

 // Initialize map

 map = new TweenMap(mapWidth, mapHeight, true, new

OpenStreetMapProvider());

 map.setExtent(new MapExtent(50.259381, 24.324408, -128.320313,

-59.941406));

 addChild(map);

O ver Spa ce a nd T ime 315

Like in Illustrator, you can think of the full interactive as a bunch of layers.
In ActionScript and Flash, the first layer is the stage. You set it to not scale
objects when you zoom in on it, and you align the stage in the top left. Next
you initialize the map with the mapWidth and mapHeight that you specified in
the variables, turn on interaction, and use map tiles from OpenStreetMap.
By setting the map extent to the preceding code, you frame the map
around the United States.

The coordinates in MapExtent() are latitude and longitude which set the
bounding box for what areas of the world to show. The first and third num-
bers are latitude and longitude for the top left corner, and the second and
fourth numbers are latitude and longitude for the bottom right.

Finally, add the map (with addChild()) to the stage. Figure 8-40 shows the
result when you compile the code without adding any filters to the map.
You can either press the Play button in the top left of Flex Builder, or from
the main menu, you can select Run ➪ Run Openings.

Figure 8-40 ​ Plain map using OpenStreetMap tiles

When you run Openings, the result should pop up in your default browser.
There’s nothing on it yet, but you can click-and-drag, which is kind of cool.
Also if you prefer a different set of map tiles, you can use the Microsoft
road map (Figure 8-41) or Yahoo! hybrid map (Figure 8-42).

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s316

Figure 8-41 ​ Plain map with Microsoft road map

Figure 8-42 ​ Plain map with Yahoo! hybrid map

You can also experiment with the colors of the map by applying filters.
You could for example, change the map to grayscale by placing the follow-
ing under the code you just wrote. The mat array is of length 20 and takes
values from 0 to 1. Each value represents how much red, green, blue and
alpha each pixel gets.

var mat:Array = [0.24688,0.48752,0.0656,0,44.7,0.24688,0.48752,

 0.0656,0,44.7,0.24688,0.48752,0.0656,0,44.7,0,0,0,1,0];

var colorMat:ColorMatrixFilter = new ColorMatrixFilter(mat);

map.grid.filters = [colorMat];

P You can also
use your own
tiles if you want.
There’s a good
tutorial on the
Modest Maps
site.

P See the Adobe
reference for more
on how to use col­
or matrices to cus­
tomize objects in
ActionScript at
http://livedocs

.adobe.com/flash/

9.0/ActionScript

LangRefV3/flash/

filters/Color

MatrixFilter

.html.

O ver Spa ce a nd T ime 317

As shown in Figure 8-43, the map is all gray, which can be useful to high-
light the data that you plan to overlay on top of the map. The map serves
as background instead of battling for attention.

Figure 8-43 ​ Grayscale map after applying filter

You can also invert the colors with a color transform.

map.grid.transform.colorTransform =

 new ColorTransform(-1,-1,-1,1,255,255,255,0);

This turns white to black and black to white, as shown in Figure 8-44.

Figure 8-44 ​ Black and white map after inverting colors with transform

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s318

To create zooming buttons, first write a function to make buttons. You’d
think that there would be a quick default way to do this by now, but it
still takes a handful of code to get the job done. The function definition of
makeButton() is at the bottom of the Openings class.

public function makeButton(clip:Sprite, name:String, labelText:String,

action:Function):Sprite

{

 var button:Sprite = new Sprite();

 button.name = name;

 clip.addChild(button);

 var label:TextField = new TextField();

 label.name = ‘label’;

 label.selectable = false;

 label.textColor = 0xffffff;

 label.text = labelText;

 label.width = label.textWidth + 4;

 label.height = label.textHeight + 3;

 button.addChild(label);

 button.graphics.moveTo(0, 0);

 button.graphics.beginFill(0xFDBB30, 1);

 button.graphics.drawRect(0, 0, label.width, label.height);

 button.graphics.endFill();

 button.addEventListener(MouseEvent.CLICK, action);

 button.useHandCursor = true;

 button.mouseChildren = false;

 button.buttonMode = true;

 return button;

}

Then create another function that makes use of the function and draws
the buttons you want. The following code creates two buttons using
makeButton()—one for zooming in and the other for zooming out. It puts
them at the bottom left of your map.

// Draw navigation buttons

private function drawNavigation():void

{

 // Navigation buttons (zooming)

O ver Spa ce a nd T ime 319

 var buttons:Array = new Array();

 navButtons = new Sprite();

 addChild(navButtons);

 buttons.push(makeButton(navButtons, ‘plus’, ‘+’, map.zoomIn));

 buttons.push(makeButton(navButtons, ‘minus’, ‘–’, map.zoomOut));

 var nextX:Number = 0;

 for(var i:Number = 0; i < buttons.length; i++) {

 var currButton:Sprite = buttons[i];

 Sprite(buttons[i]).scaleX = 3;

 Sprite(buttons[i]).scaleY = 3;

 Sprite(buttons[i]).x = nextX;

 nextX += 3*Sprite(buttons[i]).getChildByName(‘label’).width;

 }

 navButtons.x = 2; navButtons.y = map.height-navButtons.height-2;

}

However, because it’s a function, the code won’t execute until you call it.
In the Openings() function, also known as the constructor, under the fil-
ters, add drawNavigation(). Now you can zoom in to locations of interest, as
shown in Figure 8-45.

Figure 8-45 ​ Map with zooming enabled

That’s all you need for the base map. You pick your tiles, set your vari-
ables, and enable interaction.

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s320

Add the Markers

The next steps are to load the Walmart location data and create mark-
ers for each store opening. In the constructor, the following code loads
an XML file from a URL. When the file finishes loading, a function named
onLoadLocations() is called.

 var urlRequest:URLRequest =

 new URLRequest(‘http://projects.flowingdata.com/walmart/walmarts_

new.xml’);

 urlLoader = new URLLoader();

 urlLoader.addEventListener(Event.COMPLETE, onLoadLocations);

 urlLoader.load(urlRequest);

The obvious next step is to create the onLoadLocations() function. It reads
the XML file and stores the data in arrays for easier use later. Before you
do that though, you need to initialize a few more variables after navButtons.

private var urlLoader:URLLoader;

private var locations:Array = new Array();

private var openingDates:Array = new Array();

These variables are used in onLoadLocations(). Latitude and longitude
are stored in locations, and opening dates, in year format, are stored in
openingDates.

private function onLoadLocations(e:Event):void {

 var xml:XML = new XML(e.target.data);

 for each(var w:* in xml.walmart) {	

 locations.push(new Location(w.latitude, w.longitude));

 openingDates.push(String(w.opening_date));

 }

 markers = new MarkersClip(map, locations, openingDates);

 map.addChild(markers);

}

The next step is to create the MarkersClip class. Following the same
directory structure discussed earlier, there is a directory named flowing-
data in the com directory. A gps directory is in the flowingdata directory.
Finally, in com ➪ flowingdata ➪ gps is the MarkersClip class. This is the
container that will hold all the Walmart markers, or rather, the data layer
of your interactive map.

O ver Spa ce a nd T ime 321

As before, you need to import the classes that you will use. Usually, you
add these as you need them in the code, but for the sake of simplicity, you
can add all of them at once.

 import com.modestmaps.Map;

 import com.modestmaps.events.MapEvent;

 import flash.display.Sprite;

 import flash.events.TimerEvent;

 import flash.geom.Point;

 import flash.utils.Timer;

The first two are from Modest Maps, whereas the last four are native
classes. Then you set variables right before the MarkersClip() function.
Again, you would add these as you need them, but you can add them all
now to get to the meat of this class—the functions.

 protected var map:Map; // Base map

 public var markers:Array; // Holder for markers

 public var isStationary:Boolean;

 public var locations:Array;

 private var openingDates:Array;

 private var storesPerYear:Array = new Array();

 private var spyIndex:Number = 0; // Stores per year index

 private var currentYearCount:Number = 0; // Stores shown so far

 private var currentRate:Number; // Number of stores to show

 private var totalTime:Number = 90000; // Approx. 1.5 minutes

 private var timePerYear:Number;

 public var currentYear:Number = 1962; // Start with initial year

 private var xpoints:Array = new Array(); // Transformed longitude

 private var ypoints:Array = new Array(); // Transformed latitude

 public var markerIndex:Number = 0;

 private var starting:Point;

 private var pause:Boolean = false;

 public var scaleZoom:Boolean = false;

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s322

In the MarkersClip() constructor, store the variables that will be passed to
the class and compute a few things such as time per year and coordinates
for stores. You can think of this as the setup.

The storesPerYear variable stores how many stores opened during a given
year. For example, one store opened the first year, and no stores opened
the next. When you use this code with your own data, you need to update
storesPerYear appropriately. You could also write a function that com-
putes stores or location openings per year to increase the reusability of
your code. A hard-coded array is specified in this example for the sake of
simplicity.

 this.map = map;

 this.x = map.getWidth() / 2;

 this.y = map.getHeight() / 2;

 this.locations = locations;

 setPoints();

 setMarkers();

 this.openingDates = openingDates;

 var tempIndex:int = 0;

 storesPerYear = [1,0,1,1,0,2,5,5,5,15,17,19,25,19,27,

 39,34,43,54,150,63,87,99,110,121,142,125,131,178,

 163,138,156,107,129,53,60,66,80,105,106,114,96,

 130,118,37];

 timePerYear = totalTime / storesPerYear.length;

There are two other functions in the MarkersClip class: setPoints() and
setMarkers(). The first one translates latitude and longitude coordinates
to x- and y-coordinates, and the second function places the markers on
the map without actually showing them. Following is the definition for
setPoints(). It uses a built-in function provided by Modest Maps to calcu-
late x and y and then stores the new coordinates in xpoints and ypoints.

 public function setPoints():void {

 if (locations == null) {

 return;

 }

O ver Spa ce a nd T ime 323

 var p:Point;

 for (var i:int = 0; i < locations.length; i++) {

 p = map.locationPoint(locations[i], this);

 xpoints[i] = p.x;

 ypoints[i] = p.y;

 }

 }

The second function, setMarkers(), uses the points that setPoints() stores
and places markers accordingly.

 protected function setMarkers():void

 {

 markers = new Array();

 for (var i:int = 0; i < locations.length; i++)

 {

 var marker:Marker = new Marker();

 addChild(marker);

 marker.x = xpoints[i]; marker.y = ypoints[i];

 markers.push(marker);

 }

 }

The function also uses a custom Marker class, which you can find in
com ➪ flowingdata ➪ gps ➪ Marker.as, assuming you have downloaded
the complete source code. It’s basically a holder, and when you call its
play() function, it “lights up.”

Now you have location and markers loaded on the map. However, if you
compiled the code now and played the file, you would still see a blank map.
The next step is to cycle through the markers to make them light up at the
right time.

The playNextStore() function simply calls play() of the next marker and
then gets ready to play the one after that. The startAnimation() and
onNextYear() functions use timers to incrementally display each store.

 private function playNextStore(e:TimerEvent):void

 {

 Marker(markers[markerIndex]).play();

 markerIndex++;

 }

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s324

If you were to compile and run the animation now, you’d get dots, but it
doesn’t work with the map’s zoom and pan, as shown in Figure 8-46. As
you drag the map back and forth or zoom in and out, the bubbles for each
store are stationary.

Figure 8-46 ​ Growth map with incorrect pan and zoom

Listeners are added in the constructor so that the dots move whenever
the map moves. Whenever a MapEvent is triggered by Modest Maps, a cor-
responding function defined in MarkersClip.as is called. For example in
the first line below, onMapStartZooming() is called when a user clicks on the
map’s zoom button.

 this.map.addEventListener(MapEvent.START_ZOOMING,

 onMapStartZooming);

 this.map.addEventListener(MapEvent.STOP_ZOOMING,

 onMapStopZooming);

 this.map.addEventListener(MapEvent.ZOOMED_BY, onMapZoomedBy);

 this.map.addEventListener(MapEvent.START_PANNING,

 onMapStartPanning);

 this.map.addEventListener(MapEvent.STOP_PANNING,

 onMapStopPanning);

 this.map.addEventListener(MapEvent.PANNED, onMapPanned);

This gives you the final map, as shown in Figure 8-47.

W rappi ng Up 325

Figure 8-47 ​ Fully interactive growth map showing Wal-Mart openings

The story with Walmart store openings is the organic growth. The com-
pany started in a single location and slowly spread outward. Obviously,
this isn’t always the case. For example, Target’s growth doesn’t look so
calculated. Costco’s growth is less dramatic because there are fewer
locations, but its strategy seems to be growth on the coasts and then a
move inward.

In any case, it’s a fun and interesting way to view your data. The growth
maps seem to spur people’s imaginations, and they can wonder about the
spread of McDonald’s or Starbucks. Now that you have the code, it’s a lot
easier to implement. The hard part is finding the data.

Wrapping Up
Maps are a tricky visualization type because in addition to your own data,
you have to handle the dimension of geography. However, because of how
intuitive they are, maps can also be rewarding, both in how you can pre
sent data to others and how you can explore your data deeper than you
could with a statistical plot.

As seen from the examples in this chapter, there are a lot of possibilities
for what you can do with spatial data. With just a few basic skills, you can
visualize a lot of datasets and tell all sorts of interesting stories. This is

c h a P t e r 8: V i s ua l i z i n g Sp at i a l R e l at i o n s h i p s326

just the tip of the iceberg. I mean, people go to college and beyond to earn
degrees in cartography and geography, so you can imagine what else is
out there. You can play with cartograms, which size geographic regions
according to a metric; add more interaction in Flash; or combine maps
with graphs for more detailed and exploratory views of your data.

Online maps have become especially prevalent, and their popularity is
only going to grow as browsers and tools advance. For the growth map
example, ActionScript and Flash were used, but it could have also been
implemented in JavaScript. Which tool you use depends on the purpose.
If it doesn’t matter what tool you use, then go with the one you’re more
comfortable with. The main thing, regardless of software, is the logic. The
syntax might change, but you do the same with your data, and you look for
the same flow in your storytelling.

Designing
with a Purpose

When you explore your own data, you don’t need to do much in terms
of storytelling. You are, after all, the storyteller. However, the moment
you use your graphic to present information—whether it’s to one per-
son, several thousand, or millions—a standalone chart is no longer
good enough.

Sure, you want others to interpret results and perhaps form their own
stories, but it’s hard for readers to know what questions to ask when
they don’t know anything about the data in front of them. It’s your
job and responsibility to set the stage. How you design your graphics
affects how readers interpret the underlying data.

9

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e328

Prepare Yourself
You need to know your source material to tell good stories with data. This
is an often overlooked part of designing data graphics. When you start,
it’s easy to get excited about your end result. You want something amaz-
ing, beautiful, and interesting to look at, and this is great; but you can’t do
any of that if you have no idea what you’re visualizing. You’ll just end up
with something like Figure 9-1. How can you explain interesting points in a
dataset when you don’t know the data?

Learn about the numbers and metrics. Figure out where they came from
and how they were estimated, and see if they even make sense. This early
data gathering process is what makes graphics in The New York Times so
good. You see the end results in the paper and on the web, but you miss all
the work that goes into the graphics before a single shape is drawn. A lot
of the time, it takes longer to get all the data in order than it does to design
a graphic.

So the next time you have a dataset in front of you, try not to jump right
into design. That’s the lazy person’s way out, and it always shows in the
end. Take the time to get to know your data and learn the context of the
numbers.

Punch some numbers into R, read any accompanying documentation so
that you know what each metric represents, and see if there’s anything
that looks weird. If there is something that looks weird, and you can’t fig-
ure out why, you can always contact the source. People are usually happy
to hear that someone is making use of the data they published and are
eager to fix mistakes if there are any.

After you learn all you can about your data, you are ready to design your
graphics. Think of it like this. Remember that part in The Karate Kid when
Daniel is just starting to learn martial arts? Mister Miyagi tells him to
wax a bunch of cars, sand a wooden floor, and refinish a fence, and then
Daniel is frustrated because he feels like these are useless tasks. Then
of course, it turns out that blocking and punching all of a sudden come
natural to him because he’s been working on all the right motions. It’s
the same thing with data. Learn all you can about the data, and the visual
storytelling will come natural. If you haven’t seen the movie, just nod your
head in agreement. And then go add The Karate Kid to your Netflix queue.

�

Tip

Visualization is
about communi­
cating data, so
take the time to
learn about what
makes the base of
your graphic, or
you’ll just end up
spouting numbers.

P r epar e Yours elf 329

Figure 9-1 ​ Big graphic blueprint. Go big or go home.

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e330

Prepare Your Readers
Your job as a data designer is to communicate what you know to your
audience. They most likely didn’t look at the data, so they might not see
the same thing that you see if there’s no explanation or setup. My rule of
thumb is to assume that people are showing up to my graphics blindly, and
with sharing via Facebook and Twitter and links from other blogs, that’s
not all that far off.

For example, Figure 9-2 shows a screenshot of an animated map I made.
If you haven’t seen this graphic before, you probably have no clue what
you’re looking at. Given the examples in Chapter 8, “Visualizing Spatial
Relationships,” your best guess might be openings for some store.

Figure 9-2 ​ Map without a title or context

The map actually shows geotagged tweets that were posted around the
world during the inauguration of President Barack Obama on Tuesday,
January 20, 2009, at noon Eastern Standard Time. The animation starts
early Monday morning, and as the day moves on, more people wake and
tweet at a steady rate. The number of tweets per hour increases as the
event nears, and Europe gets in on some of the action as the United States
sleeps. Then Tuesday morning starts, and then boom—there’s huge
excitement as the event actually happens. You can easily see this progres-
sion in Figure 9-3. Had I provided this context for Figure 9-2, it probably
would’ve made a lot more sense.

P Watch the full
map animation at
http://datafl

.ws/19n.

P r epar e Your R e ad ers 331

Figure 9-3 ​ Tweets during the inauguration of President Barack Obama

You don’t have to write an essay to accompany every graphic, but a title
and a little bit of explanation via a lead-in are always helpful. It’s often
good to include a link somewhere on your graphic so that people can still
find your words even if the graphic is shared on another site. Otherwise, it
can quickly become like a game of Telephone, and before you know it, the
graphic you carefully designed is explained with the opposite meaning you
intended. The web is weird like that.

As another example, the graphic in Figure 9-4 is a simple timeline that
shows the top ten data breaches at the time.

It’s basic with only ten data points, but when I posted it on FlowingData, I
brought up how the breaches grow higher in frequency as you move from
2000 to 2008. The graphic ended up getting shared quite a bit, with a vari-
ant even ending up in Forbes magazine. Almost everyone brought up that
last bit. I don’t think people would’ve given the graphic much thought had I
not provided that simple observation.

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e332

Figure 9-4 ​ Major data breaches since 2000

The lesson: Don’t assume your readers know everything or that they can
spot features in your graphic. This is especially true with the web because
people are used to clicking to the next thing.

That’s not to say that people won’t spend time
looking at data. As you might have seen, the
OkCupid blog has been writing relatively long
posts presenting results from thorough analy-
ses of its online dating dataset. Titles include
“The Best Questions for a First Date” and “The
Mathematics of Beauty.”

Posts on the blog have been viewed millions
of times, and people love what the OkCupid
folks have to say. In addition to the tons of
context in the actual post, people also come
to the blog with a bit of context of their own.
Because it is data and findings about dating
and the opposite sex, people can easily relate
with their own experiences. Figure 9-5, for
example, is a graphic that shows what Asian
guys typically like, which is from an OkCupid
post on what people like, categorized by race
and gender. Hey, I’m Asian and a guy. Instant
connection.

Figure 9-5 ​ What Asian guys like based on OkCupid online
dating profiles

P r epar e Your R e ad ers 333

Figure 9-6 ​ Where bars outnumber grocery stores in the United States

On the other hand, when your graphic’s topic is pollution levels or global
debt, it can be a tough sell to a general audience if you don’t do a good job
of explaining.

Sometimes, no matter how much you explain, people simply don’t like to
read online, and they’ll just skim. For example, I posted a map by Float-
ingSheep that compares number of bars to number of grocery stores in
the United States, as shown in Figure 9-6. Red indicates areas where there
are more bars than grocery stores, and orange indicates vice versa. The
FloatingSheep guys called it the “beer belly of America.”

Toward the end of the post, I wondered about the accuracy of the map
and then finished up with, “Anyone who lives in the area care to confirm? I
expect your comment to be filled with typos and make very little sense. And
maybe smell like garbage.” The lesson? Dry humor and sarcasm doesn’t
translate very well online, especially when people aren’t used to reading
your writing. I didn’t actually expect comments to smell like garbage. Most

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e334

people got the joke, but there were also a good number of insulted Wiscon-
sinites. Like I said, the web is an interesting place (in a good way).

Visual Cues
In Chapter 1, “Telling Stories with Data,” you saw how encodings work.
Basically, you have data, and that data is encoded by geometry, color, or
animation. Readers then decode those shapes, shades, and movement,
mapping them back to numbers. This is the foundation of visualization.
Encoding is a visual translation. Decoding helps you see data from a dif-
ferent angle and find patterns that you otherwise would not have seen if
you looked only at the data in a table or a spreadsheet.

These encodings are usually straightforward because they are based on
mathematical rules. Longer bars represent higher values, and smaller
circles represent smaller values. Although your computer makes a lot of
decisions during this process, it’s still up to you to pick encodings appro-
priate for the dataset at hand.

Through all the examples in previous chapters, you’ve seen how good
design not only lends to aesthetics, but also makes graphics easier to read
and can change how readers actually feel about the data or the story you
tell. Graphics with default settings from R or Excel feel raw and mechani-
cal. This isn’t necessarily a bad thing. Maybe that’s all you want to show
for an academic report. Or if your graphic is just a supplement to a more
important body of writing, it could be better to not detract from what you
want people to focus on. Figure 9-7 shows a generic bar plot that is about
as plain as plain can be.

If, however, you do want to display your graphic prominently, a quick color
change can make all the difference. Figure 9-8 is just Figure 9-7 with dif-
ferent background and foreground colors.

A darker color scheme might be used for a somber topic, whereas a
brighter color scheme can feel more happy-go-lucky (Figure 9-9).

Of course, you don’t always need a theme. You can use a neutral color pal-
ette if you like, as shown in Figure 9-10.

V is ual C ue s 335

Figure 9-7 ​ Plain bar plot

Figure 9-8 ​ Default graph with dark color scheme

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e336

Figure 9-9 ​ Default graph with light color scheme

Figure 9-10 ​ Default graph with neutral color scheme

V is ual C ue s 337

The main point is that color choice can play a major role in data graphics.
It can evoke emotions (or not) and help provide context. It’s your respon-
sibility to choose colors that represent an accurate message. Your colors
should match the story you are trying to tell. As shown in Figure 9-11, a
simple color change can change the meaning of your data completely.
The graphic by designer David McCandless and design duo Always With
Honor, explores the meaning of colors in different cultures. For example,
black and white are often used to represent death; however, blue and
green are more commonly used in Muslim and South American cultures,
respectively.

Similarly, you can change geometry for a different look, feel, and meaning.
For example, Figure 9-12 shows a randomly generated stacked bar chart
with visualization researcher Mike Bostock’s Data-Driven Documents. It
has straight edges and distinct points, along with peaks and valleys.

Figure 9-11 ​ Colours In Culture by David McCandless and Always With Honor

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e338

Figure 9-12 ​ Randomly generated stacked bar chart

If instead you used a streamgraph to show similar data, as shown in Fig-
ure 9-13, you clearly get a different feel. It’s more free-flowing and contin-
uous, and instead of peaks and valleys, you have tightening and swelling.
At the same time though, the geometry between the two chart types is
similar. The streamgraph is basically a smoothed stacked bar chart with
the horizontal axis in the center instead of on the bottom.

Figure 9-13 ​ Randomly generated streamgraph

Sometimes context can simply come from how you organize shapes and
colors. Figure 9-14 shows a graphic that I made for fun to celebrate the
holidays. The top part shows the ingredients that go into brining your turkey,
and on the bottom is what goes into the turkey when you roast it in the oven.

P Check out
Lee Byron and
Martin Wat-
tenberg’s paper,
“Stacked Graphs—
Geometry and
Aesthetics” for
more information
on streamgraphs.
Several packages
are also available,
such as Protovis
and D3, that en-
able you to design
your own.

V is ual C ue s 339

Figure 9-14 ​ Recipe for Christmas turkey

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e340

The bottom line: At its most basic level, visualization is turning data, which
can be numbers, text, categories, or any variety of things, into visual ele-
ments. Some visual cues work better than others, but applicability also
varies by dataset. A method that’s completely wrong for one dataset could
fit perfectly for another. With practice, you can quickly decide what fits
your purpose best.

Good Visualization
Although people have been charting and graphing data for centuries, only
in the past few decades have researchers been studying what works and
what doesn’t. In that respect, visualization is a relatively new field. There
still isn’t a consensus on what visualization actually is. Is visualization
something that has been generated by a computer following a set of rules?
If a person has a hand in the design process, does that make it not a visu-
alization? Are information graphics visualization, or do they belong in their
own category?

Look online, and you can find lots of threads discussing differences and
similarities between information graphics and visualization or essays that
try to define what visualization is. It always leads to a never-ending back
and forth without resolution. These opposing opinions lead to varied crite-
ria for what makes a data graphic good or bad.

Statisticians and analysts, for example, generally think of visualization
as traditional statistical graphics that they can use in their analyses. If a
graphic or interactive doesn’t help in analysis, then it’s not useful. It’s a
failure. On the other hand, if you talk to graphic designers about the same
graphic, they might think the work is a success because it displays the
data of interest fairly and presents the data in an engaging way.

What you need to do is smush them all together, or at least get them in the
same room together more often. The analytically minded can learn a lot
from designers about making data more relatable and understandable,
whereas design types can learn to dig deeper into data from their analytic
counterparts.

W rapping Up 341

I don’t try to define what visualization is because the definition doesn’t
affect how I work. I consider the audience, the data in front of me, and ask
myself whether the final graphic makes sense. Does it tell me what I want
to know? If yes, then great. If no, I go back to the drawing board and figure
out what would make the graphic better so that it answers the questions
I have about the data. Ultimately, it’s all about your goals for the graphic,
what story you want to tell, and who you tell it to. Take all of the above into
account—and you’re golden.

Wrapping Up
A lot of data people see design as just a way to make your graphics look
pretty. That’s certainly part of it, but design is also about making your
graphics readable, understandable, and usable. You can help people
understand your data better than if they were to look at a default graph.
You can clear clutter, highlight important points in your data, or even evoke
an emotional response. Data graphics can be entertaining, fun, and infor-
mative. Sometimes it’ll just be the former, depending on your goal, but no
matter what you try to design—visualization, information graphic, or data
art—let the data guide your work.

When you have a big dataset, and you don’t know where to begin, the best
place to start is with a question. What do you want to know? Are you look-
ing for seasonal patterns? Relationships between multiple variables? Out-
liers? Spatial relationships? Then look back to your data to see if you can
answer your question. If you don’t have the data you need, then look for
more.

When you have your data, you can use the skills you learned from the
examples in this book to tell an interesting story. Don’t stop here, though.
Think of the material you worked through as a foundation. At the core of all
your favorite data graphics is a data type and a visualization method that
you now know how to work with. You can build on these for more advanced
and complex graphics. Add interactions, combine plots, or complement
your graphics with photographs and words to add more context.

c h a P t e r 9: D e s i g n i n g w i t h a P u r p o s e342

Remember: Data is simply a representation of real life. When you visualize
data, you visualize what’s going on around you and in the world. You can
see what’s going on at a micro-level with individuals or on a much larger
scale spanning the universe. Learn data, and you can tell stories that most
people don’t even know about yet but are eager to hear. There’s more data
to play with than ever before, and people want to know what it all means.
Now you can tell them. Have fun.

Index

Symbols
$ (dollar sign), columns, 97
% (percent sign), Protovis tooltips, 154
? (question mark), R, 102, 279

A
Able2Extract, 27
ActionScript, 65–67, 167

colors, 316
maps, animation, 315
Modest Maps, 83–84

addChild(), 315
Adobe Flex Builder

interactive stacked area charts, 167–170
maps, animation, 311–313

Adobe Illustrator, 76, 77–78
Align window, 106
Area Graph Tool, 163
bar graphs, 102–107
Color window, 116–117, 127, 140, 236
Direct Selection Tool, 103, 104, 106, 139,

164
fonts, 104
Graph Tool, 78
heatmaps, 236
histogram matrix, 218–219
Layer window, 127
Line Graph Tool, 120–121
Mark Data Points, 122
MDS, 264
Object menu, 104, 105
Pen Tool, 140
pie charts, 137–141
Pie Graph Tool, 137

Rectangle Tool, 127
scatterplots, 113–117
Selection Tool, 103, 116
spreadsheets, 138–139
stacked area charts, 163–166
stacked bar charts, 111
step charts, 124, 127
tick marks, 122
time series charts, 120–123
Tools window, 103, 121, 137
Treemap Tool, 158
Type menu, 104
Type Tool, 107, 117
URL, 121
Window menu, 103

AggData, 24
aging, 8, 161–166
Align window, 106
Always With Honor, 337
Amazon Public Data Sets, 24
angles, pie charts, 17–18
animation, maps

ActionScript, 315
Adobe Flex Builder, 311–313
colors, 316–317
dots, 324
Flash, 315
latitude, 315, 320
listeners, 324
longitude, 315, 320
markers, 320–325
Modest Maps, 310, 313–314
Openings(), 314, 319
space, 309–325
Target, 309
time, 309–325

Inde x344

Walmart, 309, 325
zoom, 318

API. See Application Programming Interface
aplpack, 239
Application Programming Interface (API), 24,

273, 274
ArcGIS, 83
Area Graph Tool, 163
arrays

plot(), 114
stacked bar charts, 152

art, 4–6
Asendorf, Kim, 5
axis labels

bar graphs, 98–99
design, 16–17
FlowingData, 16–17
plot(), 120
scale, 16
scatterplots, 116
step charts, 125
time series charts, 122
Type Tool, 117

B
bar graphs

Adobe Illustrator, 78, 102–107
axis labels, 98–99
borders, 98
colors, 98–99, 101, 335–336
creating, 95–102
histogram matrix, 226
lines, 106
Nathan’s Hot Dog Eating Contest, 95–107
rectangles, 17
storytelling, 103
Tableau Software, 60
tick marks, 105–106
time axis, 94
time series, 94–107
titles, 107
value axis, 95

barplot(), 97–98, 101–102
col, 100
colors, 99
stacked bar charts, 110–111

Basketball Reference, 25
Beautiful Soup, 29–38

HTML, 49
region maps, 290–292
XML, 42

Berkeley Data Lab, 24
Bing, 82
birth rates

density plots, 209–213
histograms, 204–207
histogram matrix, 214–219
stem-and-leaf plots, 201–203

<body>, 145
borders

bar graphs, 98
heatmaps, 236
scatterplot matrix, 191
treemaps, 160

Bostock, Mike, 237, 337
bottom(), 147
boxplot(), 268
boxplots

bubble charts, 198
outliers, 268
quartiles, 268
R, 268

Brewer, Cynthia, 235, 286
bubbles, Polymaps, 85
bubble charts

boxplots, 198
circles, 193
colors, 197
correlation, 192–200
creating, 194–200
crime, 194–200
labels, 198–199, 200
maps, 283–285
read.csv(), 195
rectangles, 198
relationships, 192–200
sizing, 18–19, 194
squares, 198, 199
stars, 198
symbols(), 195–198
text(), 198–199
thermometers, 198
value axis, 193

Inde x 345

business reports, design, 20
Byron, Lee, 338

C
c(), 100, 256
Carter, Shan, 44
categories

interactive stacked area charts, 170
treemaps, 160

category axis
labels, 156
stacked bar charts, 148

causation, 11, 180–181
Census Bureau, 26, 170

crime, 183
character development, 7–8
Chernoff Faces, 238–243
Chestnut, Joey, 107
choropleths, 85

country maps, 301
region maps, 286, 294
unemployment, 294

circles
bubble charts, 193
maps, 277–279

Cleveland, William, 13, 127, 128
clipping masks, 103–104
close(), 37
clusters, 263–264
cm.colors(), 231
cmdscale(), 260
CMYK. See Cyan, Magenta, Yellow, and key
code

data formats, 46–51, 62–75
trade-offs, 74–75

JSON, 50
col, 98

barplot(), 100
fill_colors, 100
scatterplots, 116

colors, 334–337
ActionScript, 316
bar graphs, 98–99, 101, 335–336
barplot(), 99
bubble charts, 197

density plots, 210
differences, 228–229
Direct Selection Tool, 106
donut charts, 146
heatmap(), 233
heatmaps, 231–236

context, 234
scale, 233

histogram matrix, 225
interactive stacked area charts, 174
maps, 278–279

animation, 316–317
MDS, 261–263
multiple variables, 228–229
parallel(), 255
parallel coordinates plots, 253–256
pie charts, 139–140
Protovis, 146
region maps, 286–302
scatterplot matrix, 191
stacked area charts, 164–165
stacked bar charts, 111, 152–153
step charts, 127
treemaps, 159

Color window, 116–117, 127, 140, 236
ColorBrewer, 153, 235

interactive stacked area charts, 175–176
Python, 292
region maps, 286–288

Colours In Culture, 337
columns

$ (dollar sign), 97
country maps, 298
heatmaps, 231
histograms, 203
latitude, 280
longitude, 280
parallel coordinates plots, 252
region maps, 288–289
scatterplots, 114
stacked bar charts, 109
star charts, 245

comma-delimited files, 40, 97
comma-separated values (CSV), 40, 44, 51, 96

country maps, 299
heatmaps, 231
histogram matrix, 215

Inde x346

SVG, 290–291
treemaps, 158–159
XML, 47–50

comparison
histogram matrix, 214–219
relationships, 213–226

compelling, 6–8
context, 19, 22, 107

heatmap colors, 234
maps, 330

continuous data
stacked area charts, 162–166
time series, 118–132

Corel Draw, 79
correlation, 11

bubble charts, 192–200
causation, 180–181
relationships, 180–200
scatterplots, 181–192

Costco, 276–280, 281
country maps, 298–302

choropleths, 301
columns, 298
Python dictionary, 299
SVG, 299

crime
bubble charts, 194–200
faces, 242–243
Nightingale charts, 249
outliers, 265
scatterplots, 183–187
star charts, 245–250

crummy.com, 30
CSS, 67–71

country maps, 299
donut charts, 145
rows, 300–301
stacked bar charts, 152, 157

CSV. See comma-separated values
csv.reader(), 48, 291
Cyan, Magenta, Yellow, and key (CMYK), 117

D
D3, 338
DASL. See Data and Story Library

data, 21–52
breaches, 332
checking, 12
context, 22
direct queries, 23
finding sources, 22–26
formats, 38–51

code, 46–51, 62–75
delimited text, 40
JSON, 40
spreadsheets, 45
switching, 47–50
Tool, 42–46
XML, 41–42

frames, 231
general applications, 24
geography, 25
government, 26
matrix, 231
politics, 26
provided by others, 22
scatterplot matrix, 189
scraping, 27–38
search engines, 23
sports, 25
spreadsheets, 22
topical, 24–26
universities, 23–24
world, 25–26

Data and Story Library (DASL), 23
databaseFootball, 25
Data-Driven Documents, 337
data.gov, 26
DataSF, 26
death probability, 3
decoding, 334
delimited files, 40, 48, 97, 210
density(), 209
density plots, 208–213

birth rates, 209–213
colors, 210
creating, 209–213
histograms, 212
LOESS, 208
plot(), 210
R, 209

Inde x 347

relationships, 208–213
tab-delimited files, 210

design, 13–20
audience, 20
axis labels, 16–17
encodings, 13–16
geometric shapes, 17–19
labels, 13–16
legends, 13–16
sources, 19

Devlin, Susan, 127
diameter, bubble charts, 18
dictionary, Python, 291

country maps, 299
differences, 227–269

colors, 228–229
faces, 238–243
heatmaps, 229–237
maps, 305–308
MDS, 258–264
multiple variables, 228–258
outliers, 265–269
parallel coordinates plots, 251–258
star charts, 244–250

Direct Selection Tool, 103, 104, 164
colors, 106
pie charts, 139
stacked area charts, 164
Tools window, 139

dist(), 260
distribution

comparison, 213–226
density plots, 208–213
height, 5–6
histograms, 203–208
proportions, 136
relationships, 200–213

<div>, 145, 152
d’Ocagne, Maurice, 251
donut charts

colors, 146
CSS, 145
height, 146
HTML, 144–145
JavaScript, 145
proportions, 141–148
Protovis, 142–148

SVG, 142
width, 146

dots, 17
maps, 276–280

animation, 324
drawNavigation(), 319
dropout rates

MDS, 260–264
parallel coordinates plots, 257

E
education

MDS, 260–263
parallel coordinates plots, 252–258

emotions, 4, 5
encodings, 13–16, 334
Enos, Jeff, 158
entertainment, 5–6
Ericson, Matthew, 45
event(), 154
Excel, 39, 54–56

conversion, 43–44
CSV, 44
Tableau Software, 60
time series charts, 121

Exploratory Data Analysis (Tukey), 201
Extensible Markup Language (XML), 41–42

Beautiful Soup, 42
CSV, 47–50
iterations, 49
Mr. Data Converter, 44
onLoadLocations(), 320
open(), 49
Python, 38, 42, 290
SVG, 289–290, 299

F
Facebook, 5
faces

crime, 242–243
differences, 238–243
multiple variables, 238–243
NBA, 238–243
read.csv(), 239

Inde x348

faces(), 239, 240
Fakesville, 280–283
fertility rates, 283–285
File menu, 102
fill, 290
fill_colors, 100
fillStyle(), 154
filter(), 174
filtering, 185
findAll(), 32, 49, 292
Firefox, 13–14, 70
Fischer, Andreas Nicolas, 5
Flare, 66, 167
Flash, 65–67, 167

Google Maps, 82
maps, animation, 315
Modest Maps, 83–84

Flash Builder. See Adobe Flex Builder
Flex Builder. See Adobe Flex Builder
Flex Navigator, 168
FlickrShapefiles, 25
FloatingSheep, 333
FlowingData, 9–10, 70, 77. See also your.

flowingdata
axis labels, 16–17
histogram matrix, 219, 225
outliers, 267
pie charts, 138
PolyMaps, 85
R, 76–77
scatterplots, 114
time maps, 305
treemaps, 158, 161

Follow the Money, 26
fonts

scatterplots, 116
Selection Tool, 104, 116
stacked bar charts, 111
treemaps, 159

for, 51
Freebase, 24, 42

G
Gadget, 56
Gapminder Foundation, 6–7, 192

generate_css.py, 300
geocoder.us, 274
geocoding, 273
GeoCommons, 25, 87
geography data, 25
geometric shapes, 17–19. See also specific

shapes
Geopy, 273–274
GGobi, 252
Global Health Facts, 25
Good Maps Latitude Longitude Popup

(Gorissen), 273
Google Chrome, 70
Google Finance, 57
Google Maps, 81, 82–83, 273, 274
Google Refine, 42–43
Google Spreadsheets, 56–57
Gore, Al, 6
Gorissen, Pierre, 273
government data, 26
graphs. See also specific graph types

Excel, 55
Python, 63

Graph Tool, 78
Graphical Perception and Graphical Methods for

Analyzing Data (Cleveland and McGill), 13
grid lines, 118, 191
Gridworks, 42

H
happiest day of year, 5–6
Harris, Jonathan, 4–5
<head>, 145
header, 97
heatmap(), 229, 231, 233
heatmaps

Adobe Illustrator, 236
borders, 236
colors, 231–236

context, 234
scale, 233

columns, 231
CSV, 231
data frames, 231
data matrix, 231

Inde x 349

differences, 229–237
multiple variables, 229–237
NBA, 230–237
Protovis, 237
R, 229–237
YFD, 69–70

height
distribution, 5–6
donut charts, 146
histograms, 204
stacked bar charts, 152–153

hist(), 204–205, 221
histogram(), 212, 215–216
histograms, 203–208

birth rates, 204–207
columns, 203
density plots, 212
height, 204
maximum, 208
median, 208
minimum, 208
outliers, 267
rectangles, 203
relationships, 203–208
stem-and-leaf plots, 201, 202
value axis, 204
width, 204

histogram matrix
Adobe Illustrator, 218–219
bar graphs, 226
birth rates, 214–219
cells, 216
colors, 225
comparison, 214–226
CSV, 215
FlowingData, 219, 225
histogram(), 215–216
labels, 217
R, 214
relationships, 214–226
Rotten Tomatoes, 222–226
rows, 214–215, 217
television sizes, 219–222

horizontal axis
interactive stacked area charts, 170
scatterplots, 184
stacked bar charts, 152–153, 156–157

Horizontal Distribute Center, 106
HTML, 32–33, 67–71, 96, 154

Beautiful Soup, 49
donut charts, 144–145
interactive stacked bar charts, 151
Python, 38, 290
stacked bar charts, 157

<html>, 145

I
IBM Visual Communication Lab, 58
id, 159
if-else, 51
Illustrator. See Adobe Illustrator
IMDB. See Internet Movie Database
, 32
Import window, 168–169
An Inconvenient Truth (Gore), 6
Infochimps, 24
Inkscape, 79
install.packages(), 276
interactive stacked area charts, 166–176

Adobe Flex Builder, 167–170
ColorBrewer, 175–176
colors, 174
horizontal axis, 170
JavaScript, 167
Protovis, 167

interactive stacked bar charts, 149–157, 167
HTML, 151
Obama, 151

Internet Explorer, 70, 85
Internet Movie Database (IMDB), 225
is.na(), 209
<item><item>, 41
iterations, 35, 49

data scraping, 37–38
loops, 51

J
Java applets, 60, 65
JavaScript, 67–71

donut charts, 145
Google Maps, 82

Inde x350

interactive stacked area charts, 167
Microsoft, 82
PolyMaps, 85
Processing, 65
Protovis, 151, 167

JavaScript Object Notation (JSON), 40
code, 50
CSV, 51
Mr. Data Converter, 44

JobVoyager, 170–173
journalism, 2–4
“Journalism in the Age of Data” (McGhee), 4
jQuery, 68–69
JSON. See JavaScript Object Notation

K
Kamvar, Sep, 4–5
Kane, David, 158
The Karate Kid (film), 328
keywords, 291

L
labels. See also axis labels

bubble charts, 198–199, 200
category axis, 156
design, 13–16
histogram matrix, 217
pie charts, 140–141
scatterplot matrix, 191
stacked area charts, 165
stacked bar charts, 154–156
star charts, 247
vertical axis, 156

labels, 240
latitude, 273–275

columns, 280
maps, animation, 315, 320

Layer window, 127
layers(), 154
left(), 147
legends, 13–16
length(), 100
lines

bar graphs, 106

maps, 280–283
parallel coordinates plots, 251
star charts, 244

line graphs. See also time series charts
Many Eyes, 58
proportions, 176–177

Line Graph Tool, 120–121
lineColor, 174
Lineform, 79
lines(), 212, 289
listeners, 324
lists, 100
locally weighted scatterplot smoothing

(LOESS), 127–132
curves, 128–132
density plots, 208
panel.smooth(), 190
plot(), 129
scatterplots, 185–186
scatterplot matrix, 192
unemployment, 128–132

LOESS. See locally weighted scatterplot
smoothing

longitude, 273–275
columns, 280
maps, animation, 315, 320

loops, 35, 51, 100

M
makeButton(), 318
Many Eyes, 58–60

maps, 87
scatterplot, 59
word tree, 58

map(), 279
MapEvent, 324
MapExtent(), 315
mapHeight, 315
map.market(), 159
maps, 80–88, 271–326. See also animation;

specific map types
API, 273
ArcGIS, 83
bubble charts, 283–285
circles, 277–279

Inde x 351

colors, 278–279
context, 330
Costco locations, 276–280, 281
countries, 298–302
differences, 305–308
dots, 276–280
Fakesville, 280–283
fertility rates, 283–285
GeoCommons, 87
Google Maps, 82–83
latitude, 273–275
lines, 280–283
lines(), 289
longitude, 273–275
Many Eyes, 87
Microsoft, 82–83, 316
Modest Maps, 65, 83–84
multiple, 303–305
online-based solutions, 87
Package Installer, 276
points, 275–283
Polymaps, 84–85
R, 86–87
regions, 285–302
scaled points, 283–285
space, 302–325
sqrt(), 284
summary(), 284
symbols(), 277, 284
Tableau Software, 61
time, 302–325
title, 330
trade-offs, 87–88
Yahoo!, 82–83, 316

maps, 276
mapWidth, 315
Mark Data Points, 122
markers

maps, animation, 320–325
Modest Maps, 321

MarkersClip(), 320–322
maximum

histograms, 208
proportions, 136

McCandless, David, 337
McGhee, Geoff, 4
McGill, Robert, 13

mclust, 263–264
MDS. See multidimensional scaling
mean, 200, 207
median, 200, 207, 208
Microsoft, 82–83, 273, 316
minimum

histograms, 208
proportions, 136

Miscellaneous menu, 158
mode, 200
Modest Maps, 65, 83–84

maps, animation, 310, 313–314
markers, 321

MooTools, 68–69
mouseout events, 154
mouseover events, 147
Mr. Data Converter, 43–45
Mr. People, 45–46
multidimensional scaling (MDS)

Adobe Illustrator, 264
clusters, 263–264
cmdscale(), 260
colors, 261–263
differences, 258–264
dist(), 260
dropout rates, 260–264
education, 260–263
mclust, 263–264
plot(), 260
SAT scores, 260–262
text(), 261

multiple maps, 303–305
multiple variables

colors, 228–229
differences, 228–258
faces, 238–243
heatmaps, 229–237
parallel coordinates plots, 251–258
star charts, 244–250

MySQL, 64

N
names.arg, 98
NameVoyager, 167
Nathan’s Hot Dog Eating Contest

Inde x352

bar graphs, 95–107
R, 96–102
stacked bar charts, 108–111
Wikipedia, 96

NBA
faces, 238–243
heatmaps, 230–237
parallel coordinates plots, 251–252

Needlebase, 27
negative correlation, 181–182
New York Times, 2–4
Nightingale charts, 245–250

crime, 249
no correlation, 181–182
nobr, 33, 36
Numbrary, 24
NYC DataMine, 26

O
Obama, Barack, 92, 330–331

interactive stacked bar charts, 151
pie charts, 150
stacked bar charts, 148–153

Object menu, 104, 105
<observation>, 49
OECD Statistics, 26
OkCupid, 5–6, 332
onLoadLocations(), 320
onMapStartZooming(), 324
onNextYear(), 323
opacity, 139
open(), 35, 48, 49
Openings(), 314, 319
OpenSecrets, 26
OpenStreetMap, 25
OpenZoom Viewer, 305
order(), 230
Oscar nominations, 14–15
outerRadius, 147
outliers

boxplots, 268
crime, 265
differences, 265–269
FlowingData, 267
histograms, 267
Weather Underground, 265

out-of-the-box, 54–62
Excel, 54–56
Google Spreadsheets, 56–57
Many Eyes, 58–60
Protovis, 67–68
Tableau Software, 60–61
trade-offs, 61–62
YFD, 61

P
Package Installer, 235, 276
pairs(), 190
panel.smooth(), 190
par(), 221
parallel(), 252, 255
parallel coordinates plots

c(), 256
colors, 253–256
columns, 252
creating, 252–258
differences, 251–258
dropout rates, 257
education, 252–258
lines, 251
multiple variables, 251–258
NBA, 251–252
Protovis, 252
R, 252–255
read.csv(), 252
reading_colors, 256
SAT scores, 252–256, 258
scale, 251
summary(), 255

<path>, 290
patterns, 8–10

data scraping, 37–38
pch, 116
Pen Tool, 140

scatterplots, 117
tick marks, 117
Tools window, 105–106

PHP, 64, 219
pie charts

Adobe Illustrator, 78, 137–141
angles, 17–18
Color window, 140

Inde x 353

colors, 139–140
creating, 137–141
Direct Selection Tool, 139
FlowingData, 138
labels, 140–141
Obama, 150
opacity, 139
Pen Tool, 140
proportions, 136–141
Tableau Software, 60–61

Pie Graph Tool, 137
play(), 323
Playfair, William, 136
playNextStore(), 323
plot(), 184

arrays, 114
axis labels, 120
density plots, 210
LOESS, 129
MDS, 260
R, 113, 129
scatterplots, 113
scatterplot matrix, 189
step charts, 125
time series charts, 119, 120

points
maps, 275–283
scale, 283–285
time, 93–118

points(), 116
polar area diagrams. See Nightingale charts
politics data, 26
polygon(), 210
Polymaps, 84–85
Portfolio

map.market(), 159
R, 71–72, 159
treemaps, 158

positive correlation, 181–182, 184
postage rates, 124–127
posters, 20
poverty, 6
prettify(), 293
Processing, 64–65, 219
programming. See code
proportions, 135–178

donut charts, 141–148

line graphs, 176–177
pie charts, 136–141
stacked bar charts, 148–157
time series, 161–176
treemaps, 157–161

Protovis, 67
colors, 146
donut charts, 142–148
heatmaps, 237
histogram matrix, 219
interactive stacked area charts, 167
JavaScript, 151, 167
parallel coordinates plots, 252
Stack, 153
steamgraphs, 338
title(), 154

Python, 29–38, 63–64
ColorBrewer, 292
CSV, 51
dictionary, 291

country maps, 299
Geopy, 273–274
HTML, 38, 290
keywords, 291
Modest Maps, 83–84
region maps, 288–297
SVG, 293
XML, 38, 42, 290

Q
quartiles

boxplots, 268
definition, 268
region maps, 296
summary(), 207
unemployment, 296

questionable data, 12

R
R, 71–74

? (question mark), 102, 279
aplpack, 239
boxplots, 268
density plots, 209

Inde x354

File menu, 102
FlowingData, 76–77
heatmaps, 229–237
histogram matrix, 214
id, 159
lists, 100
loops, 100
maps, 86–87
maps, 276
Miscellaneous menu, 158
Nathan’s Hot Dog Eating Contest, 96–102
parallel coordinates plots, 252–255
plot(), 113, 129
Portfolio, 71–72, 159
read.csv(), 183, 195, 215, 252
rectangles, 159
scatterplots, 71, 119
scatterplot matrix, 189, 191
stacked bar charts, 108–111
stars(), 245
statistics, 71
stem-and-leaf plot, 201
step charts, 124–132
storytelling, 74
summary(), 284
time series, 71
treemaps, 71–72, 77, 158–161
URL, 121, 183, 215
vectors, 100

radius, bubble charts, 18
Raven, 79
RColorBrewer, 235
read.csv(), 96, 97, 114

bubble charts, 195
faces, 239
parallel coordinates plots, 252
R, 183, 195, 215, 252
time series charts, 119
treemaps, 158–159
URL, 239

reading_colors, 256
Really Simple Syndication (RSS), 41
rectangles

bar graphs, 17
bubble charts, 198
histograms, 203
R, 159
treemaps, 19, 157–161

Rectangle Tool, 127
region maps, 285–302

Beautiful Soup, 290–292
choropleths, 286, 294
ColorBrewer, 286–288
colors, 292–295
columns, 288–289
csv.reader(), 291
findAll(), 292
<path>, 290
Python, 288–297
quartiles, 296
SVG, 288–297
unemployment, 288–297

relationships, 11–12, 179–226
bubble charts, 192–200
comparison, 213–226
correlation, 180–200
density plots, 208–213
distribution, 200–213
histograms, 203–208
histogram matrix, 214–226
scatterplots, 181–192
scatterplot matrix, 188–192

“Robust Locally Weighted and Smoothing
scatterplots” (Cleveland), 128

Rosling, Hans, 6–7, 192
Rotten Tomatoes, 222–226
rows

CSS, 300–301
histogram matrix, 214–215, 217
scatterplots, 114
time series charts, 120
treemaps, 160
white space, 249

RSS. See Really Simple Syndication

S
SAS, 71
SAT scores

MDS, 260–262
parallel coordinates plots, 252–256, 258

SaturationEncoder(), 174
Scalable Vector Graphics (SVG)

Beautiful Soup, 292
country maps, 299

Inde x 355

CSV, 290–291
donut charts, 142
Polymaps, 85
Python, 293
region maps, 288–297
XML, 289–290, 299

scale. See also multidimensional scaling
axis labels, 16
heatmap colors, 233
maps, 283–285
parallel coordinates plots, 251
points, 283–285
stacked bar charts, 152–153
treemaps, 160

scatterplots
Adobe Illustrator, 113–117
axis labels, 116
col, 116
columns, 114
correlation, 181–192
creating, 113–118, 183–187
crime, 183–187
filtering, 185
FlowingData, 114
fonts, 116
horizontal axis, 184
LOESS, 185–186
Many Eyes, 59
pch, 116
Pen Tool, 117
plot(), 113
R, 71, 119
relationships, 181–192
rows, 114
scatter.smooth(), 185–186
time axis, 112
time series, 112–118
time series charts, 119
value axis, 112, 182

scatterplot matrix
borders, 191
colors, 191
creating, 189–192
data, 189
grid lines, 191
labels, 191
LOESS, 192

plot(), 189
R, 189, 191
relationships, 188–192

scatter.smooth(), 130, 185–186
Schneiderman, Ben, 157
<script>, 145
search engines, 23
Selection Tool, 103, 104, 116
sep, 97
setMarkers(), 322–323
setPoints(), 322
setwd(), 97
Silverlight, 82
sizing

bubble diagrams, 18–19
two-dimensional shapes, 18

skew, 201
slide presentations, 20
slippy maps, 80
sorting, 230
sources

context, 19, 107
design, 19
stacked bar charts, 111

space maps, 302–325
animation, 309–325

spacing, 101–102
, 32, 33
Sparkline plugin, 69
SpatialKey, 87
S-plus, 71
spokes, 244
sports data, 25
spreadsheets. See also Excel

Adobe Illustrator, 78, 138–139
data, 22

formats, 45
Google, 56–57
Line Graph Tool, 121

sqrt(), 284
squares, 198, 199
Stack, 153
stacked area charts. See also interactive

stacked area charts
Adobe Illustrator, 163–166
colors, 164–165
continuous data, 162–166

Inde x356

Direct Selection Tool, 164
interactive, 166–176
labels, 165
Protovis, 68
tick marks, 164
time axis, 162
typos, 164
value axis, 162

stacked bar charts. See also interactive
stacked bar charts
Adobe Illustrator, 111
arrays, 152
barplot(), 110–111
category axis, 148
colors, 111, 152–153
columns, 109
creating, 108–111
CSS, 152, 157
<div>, 152
fonts, 111
height, 152–153
horizontal axis, 152–153, 156–157
HTML, 157
labels, 154–156
Nathan’s Hot Dog Eating Contest, 108–111
Obama, 148–153
proportions, 148–157
R, 108–111
randomly generated, 338
scale, 152–153
sources, 111
tick marks, 156
time series, 108–111
Type Tool, 111
value axis, 148
vertical axis, 111, 153
width, 152–153

“Stacked Graphs—Geometry and Aesthetics”
(Byron and Wattenberg), 338

Stanford Visualization Group, 67
stars, bubble charts, 198
star charts

columns, 245
creating, 245–250
crime, 245–250
differences, 244–250
labels, 247

lines, 244
multiple variables, 244–250
spokes, 244
white space, 249

stars(), 245
startAnimation(), 323
statistics, 71
steamgraphs, 68, 338
stem(), 202
stem-and-leaf plots, 201–203
step charts

Adobe Illustrator, 124, 127
axis labels, 125
colors, 127
creating, 124–127
plot(), 125
postage rates, 124–127
R, 124–132
smoothing and estimation, 127–132
time axis, 123
time series, 123–132
titles, 125
trends, 127
value axis, 123, 127

storytelling, 7
bar graphs, 103
R, 74

strings, 109
Stroke window, 106
strokeStyle(), 147
style.css, 300–301
Sumedicina (Asendorf), 5
summary(), 207, 255, 284
SVG. See Scalable Vector Graphics
symbols(), 195–198, 277, 284

T
\t, 48
tab-delimited files, 40, 48, 210
Tableau Software, 60–61
Takeru Kobayashi, 95, 107
Target, 309
television sizes, 219–222
text(), 198–199, 261
text boxes, 107
textAlign(), 155

Inde x 357

thermometers, 198
tick marks

Adobe Illustrator, 122
bar graphs, 105–106
Horizontal Distribute Center, 106
Pen Tool, 105–106, 117
stacked area charts, 164
stacked bar charts, 156
time series charts, 122

TIGER, 25
time axis

bar graphs, 94
continuous data, 119
scatterplots, 112
stacked area charts, 162
step charts, 123

time maps, 302–325
animation, 309–325
FlowingData, 305
unemployment, 304–305

time series, 9–10, 91–133
Adobe Illustrator, 78
bar graphs, 94–107
continuous data, 118–132
discrete points of time, 93–118
position, 17
proportions, 161–176
R, 71
scatterplots, 112–118
stacked bar charts, 108–111
step charts, 123–132
Tableau Software, 60
trends, 92, 118

time series charts
Adobe Illustrator, 120–123
axis labels, 122
creating, 119–123
Excel, 121
plot(), 119, 120
read.csv(), 119
rows, 120
scatterplots, 119
tick marks, 122

timestamps, 36
title(), 147, 154
titles

bar graphs, 107

barplot(), 101
HTML, 154
step charts, 125

Tools window, 103, 121, 137
Direct Selection Tool, 139
Pen Tool, 105–106

top(), 155
topical data, 24–26
traffic flow, 9–10
Transform, 105, 116
treemaps

borders, 160
categories, 160
colors, 159
creating, 158–161
CSV, 158–159
FlowingData, 158, 161
fonts, 159
hierarchy, 157–161
Portfolio, 158
proportions, 157–161
R, 71–72, 77, 158–161
read.csv(), 158–159
rectangles, 19, 157–161
rows, 160
scale, 160

Treemap Tool, 158
Trendalyzer, 6–7
trends

continuous data, 118
step charts, 127
time series, 92, 118

Tukey, John, 201
TweenFilterLite, 313
Twitter, 24
two-dimensional shapes, 18
Type menu, 104
Type Tool, 107, 111, 117, 140
typos, 22, 114, 164

U
UC Berkeley Visualization Lab, 66, 167
UCLA Statistics Data Sets, 24
UNdata, 26
unemployment

LOESS, 128–132

Inde x358

quartiles, 296
region maps, 288–297
time maps, 304–305

unique id, 291
universities, 23–24
URL

Adobe Illustrator, 121
R, 121, 183, 215
read.csv(), 239

urllib2, 32, 35, 36

V
value axis

bar graphs, 95
bubble charts, 193
continuous data, 119
density plot, 208
histograms, 204
scatterplots, 112, 182
stacked area charts, 162
stacked bar charts, 148
step charts, 123, 127

variables. See multiple variables
vectors. See also Scalable Vector Graphics

R, 100
vertical axis

density plots, 212
labels, 156
stacked bar charts, 111, 153

vis.render(), 154

W
Walmart, 309, 325

Wattenberg, Martin, 167, 338
We Feel Fine (Harris and Kamvar), 4–5
Weather Underground, 27–38, 265
white space, 241, 249
Wickham, Hadley, 215
width

donut charts, 146
histograms, 204
stacked bar charts, 152–153

Wikipedia, 24, 96
Window menu, 103
wolfamalpha.com, 23
word tree, 58
World Bank, 26, 298, 299
world data, 25–26
World Health Organization, 26
World Progress Report, 9
write(), 36
write.table(), 210

X
XML. See Extensible Markup Language

Y
Yahoo!, 82–83, 316
YFD. See your.flowingdata
your.flowingdata (YFD), 61, 69–70
y.ticks(), 156
yyyymmdd, 36

Z
zoom, 318

